Skip to main content
Log in

Proton, thermal and mechanical relaxation characteristics of a complex biomaterial (de-fatted date-pits) as a function of temperature

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal (differential scanning calorimetry, DSC), proton (low-frequency nuclear magnetic resonance, LF-NMR), and mechanical (differential mechanical thermal analysis, DMTA) relaxations were measured for defatted date-pits as a function of temperature. DSC showed three types of relaxations, lower one structural relaxation (i.e. − 5 °C), followed by a glass transition (i.e. 136 °C) and solids melting–decomposition (i.e. 171 °C). LF-NMR showed three pools of protons, rigid, semi-rigid and mobile. Rigid protons showed two types of relaxations, first one low temperature increase (− 80 to − 40 °C), plateau region (− 60 to − 40 °C) and a positive peak at 120 °C, and semi-rigid showed maximum peak at − 5 °C and minimum peak at 150 °C. Mobile protons showed low relaxation (− 80 to − 40 °C), a maximum peak at 70 °C and a minimum peak at 130 °C. The maximum peak (i.e. − 5 °C) of semi-rigid protons was similar to the DSC structural change, while the maximum peak of rigid protons (120 °C) was similar to DSC glass transition (i.e. 136 °C). The minimum peak of the semi-rigid protons (i.e. 150 °C) was similar to the solids melting–decomposition (171 °C). DMTA showed five regions of mechanical relaxations, glassy region (i.e. onset at 32 °C), glass transition (i.e. 32–85 or 87 °C), first reaction region with a plateau or peak (85–140 °C), second reaction region (87–174 °C), and softening or decomposition region (223 or 242 °C). Mechanical glass showed completely different relaxation as compared to the protons and thermal relaxations. This study showed that LF-NMR, DSC and DMTA could be used to explore the relaxations of a material at nano-, micro- and macro-levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schiraldi A, Fessas D. J Therm Anal Calorim. 2019;138(4):2721.

    Article  CAS  Google Scholar 

  2. Kalichevsky MT, Jaroszkiewicz EM, Blanshard JMV. Polymer. 1993;34(2):346–58.

    Article  CAS  Google Scholar 

  3. M. S. Rahman, S. Suresh and N. Al-Habsi, J Therm Anal Calorim 1–13 (2020).

  4. M. Al-Mawali, N. Al-Habsi and M. S. Rahman, Food Eng Rev, 1–11 (2020).

  5. Rahman M, Kasapis S, Al-Kharusi N, Al-Marhubi I, Khan A. J Food Eng. 2007;80(1):1–10.

    Article  CAS  Google Scholar 

  6. Vittadini E, Dickinson L, Chinachoti P. Carbohyd Polym. 2001;46(1):49–57.

    Article  CAS  Google Scholar 

  7. Dong Y, Ruan Y, Wang H, Zhao Y, Bi D. J Appl Polym Sci. 2004;93(4):1553–8.

    Article  CAS  Google Scholar 

  8. Cauley B, Cipriani C, Ellis K, et al. Macromolecules. 1991;24(2):403–9.

    Article  CAS  Google Scholar 

  9. Quinn FX, Kampff E, Smyth G, McBrierty VJ. Macromolecules. 1988;21(11):3191–8.

    Article  CAS  Google Scholar 

  10. Rahman MS. Int J Food Prop. 2004;7(3):407–28.

    Article  Google Scholar 

  11. Kurozawa LE, Terng I, Hubinger MD, Park KJ. J Food Eng. 2014;123:157–64.

    Article  CAS  Google Scholar 

  12. Cao W, Nishiyama Y, Koide S. Int J Food Sci Technol. 2004;39(9):899–906.

    Article  CAS  Google Scholar 

  13. M. S. Rahman, M. K. Al-Khusaibi, K. A. AL-Farsi, I. M. Al-Bulushi, A. Abushelaibi and N. Al-Habsi, Int J Food Stud 8(1) (2019).

  14. Orlien V, Risbo J, Andersen ML, Skibsted LH. J Agric Food Chem. 2003;51(1):211–7.

    Article  CAS  PubMed  Google Scholar 

  15. van der Sman R. Curr Opin Food Sci. 2018;21:32–8.

    Article  Google Scholar 

  16. Johari G. Thermochim Acta. 2014;589:76–84.

    Article  CAS  Google Scholar 

  17. Hourston D, Song M, Hammiche A, Pollock H, Reading M. Polymer. 1997;38(1):1–7.

    Article  CAS  Google Scholar 

  18. Roudaut G, Wallecan J. Carbohyd Polym. 2015;115:10–5.

    Article  CAS  Google Scholar 

  19. Masavang S, Roudaut G, Champion D. J Food Eng. 2019;245:43–52.

    Article  CAS  Google Scholar 

  20. Hughes DJ, Bönisch GB, Zwick T, et al. Carbohyd Polym. 2018;199:1–10.

    Article  CAS  Google Scholar 

  21. Tedeschi C, Leuenberger B, Ubbink J. Food Hydrocolloids. 2016;58:75–88.

    Article  CAS  Google Scholar 

  22. Islam MN, Zhang M, Liu H, Xinfeng C. Food Bioprod Process. 2015;94:229–38.

    Article  CAS  Google Scholar 

  23. B. Wunderlich, Therm Anal. (Elsevier Inc, 1990).

  24. Gómez-Martínez D, Partal P, Martínez I, Gallegos C. Ind Crops Prod. 2013;43:704–10.

    Article  Google Scholar 

  25. Rahman M, Al-Saidi G, Guizani N. Thermochim Acta. 2010;509:111–9.

    Article  CAS  Google Scholar 

  26. H. Madeka and J. Kokini, in Water in foods (Elsevier, 1994), pp. 241–252.

  27. Madeka H, Kokini J. Cereal Chem. 1996;73(4):433–8.

    CAS  Google Scholar 

  28. Besbes S, Blecker C, Deroanne C, Drira N, Attia H. Food Chem. 2004;84(4):577–84.

    Article  CAS  Google Scholar 

  29. Colnago LA, Wiesman Z, Pages G, Musse M, Monaretto T, Windt CW, Rondeau-Mouro C. J Magn Reson. 2021;323: 106899.

    Article  CAS  PubMed  Google Scholar 

  30. A. B. Javaid, H. Xiong, Z. Xiong, D. Zia ud, I. Ullah, and P. Wang,vFood Structure 28, 100172 (2021).

  31. Richardson SJ, Baianu IC, Steinberg MP. J Food Sci. 1987;52(3):806–9.

    Article  CAS  Google Scholar 

  32. Al-Habsi NA, Al-Hadhrami S, Al-Kasbi H, Rahman MS. Fish Sci. 2017;83(5):845–51.

    Article  Google Scholar 

  33. Erikson U, Standal IB, Aursand IG, Veliyulin E, Aursand M. Magn Reson Chem. 2012;50(7):471–80.

    Article  CAS  PubMed  Google Scholar 

  34. Srikaeo K, Rahman MS. J Cereal Sci. 2018;82:94–8.

    Article  CAS  Google Scholar 

  35. Kalichevsky MT, Jaroszkiewicz EM, Ablett S, Blanshard JMV, Lillford PJ. Carbohyd Polym. 1992;18(2):77–88.

    Article  CAS  Google Scholar 

  36. Ruan R, Long Z, Chen P, Huang V, Almaer S, Taub I. J Food Sci. 1999;64(1):6–9.

    Article  CAS  Google Scholar 

  37. Tymczyszyn EE, Sosa N, Gerbino E, Hugo A, Gómez-Zavaglia A, Schebor C. Int J Food Microbiol. 2012;155(3):217–21.

    Article  CAS  PubMed  Google Scholar 

  38. Rahman MS, Al-Rawahi A. Int J Food Prop. 2017;20(2):423–35.

    Article  CAS  Google Scholar 

  39. V. J. McBrierty and K. J. Packer, Nuclear magnetic resonance in solid polymers. (Cambridge University Press, 2006).

  40. Rahman MS, Al-Marhubi IM, Al-Mahrouqi A. Chem Phys Lett. 2007;440(4–6):372–7.

    Article  CAS  Google Scholar 

  41. Homer S, Kelly M, Day L. Carbohyd Polym. 2014;108:1–9.

    Article  CAS  Google Scholar 

  42. Maidannyk V, Roos Y. Food Hydrocolloids. 2017;70:76–87.

    Article  CAS  Google Scholar 

  43. Díaz A, Bomben R, Dini C, et al. LWT. 2019;108:361–9.

    Article  Google Scholar 

  44. Lin X, Ruan R, Chen P, et al. J Food Sci. 2006;71(9):R136–45.

    Article  CAS  Google Scholar 

  45. Rahman MS, Al-Saidi GS, Guizani N. Food Chem. 2008;108(2):472–81.

    Article  CAS  PubMed  Google Scholar 

  46. B. Souda, R. Rami, B. Jalloul, and D. Mohamed, Biomass Conversion and Biorefinery, 1–11 (2020).

  47. Suresh S, Guizani N, Al-Ruzeiki M, et al. J Food Eng. 2013;119(3):668–79.

    Article  CAS  Google Scholar 

  48. Al-Khalili M, Al-Habsi N, Al-Alawi A, et al. Bioactive Carbohyd Dietary Fibre. 2021;25: 100251.

    Article  CAS  Google Scholar 

  49. Curtis L, Berry H, Bromander J. Phys Scr. 1970;2(4–5):216.

    Article  CAS  Google Scholar 

  50. Herrera ML, M’Cann JI, Ferrero C, Hagiwara T, Zaritzky NE, Hartel RW. Food Biophys. 2007;2(1):20–8.

    Article  Google Scholar 

  51. K. N. Jensen, H. S. Guldager and B. M. J⊘ rgensen, J Aqua Food Prod Technol 11 (3–4), 201–214 (2002).

  52. Räntzsch V, Haas M, Özen MB, et al. Polymer. 2018;145:162–73.

    Article  Google Scholar 

  53. Rivera W, Velasco X, Gálvez C, Rincón C, Rosales A, Arango P. Proc Food Sci. 2011;1:385–90.

    Article  CAS  Google Scholar 

  54. Redgwell RJ, Trovato V, Curti D, Fischer M. Carbohyd Res. 2002;337(5):421–31.

    Article  CAS  Google Scholar 

  55. Forssell PM, Mikkilä JM, Moates GK, Parker R. Carbohyd Polym. 1997;34(4):275–82.

    Article  CAS  Google Scholar 

  56. Vyazovkin S, Dranca I. J Phys Chem B. 2005;109(39):18637–44.

    Article  CAS  PubMed  Google Scholar 

  57. Andersen AB, Skibsted LH. LWT-Food Sci Technol. 1998;31(1):69–73.

    Article  CAS  Google Scholar 

  58. Kilburn D, Townrow S, Meunier V, Richardson R, Alam A, Ubbink J. Nat Mater. 2006;5(8):632–5.

    Article  CAS  PubMed  Google Scholar 

  59. Kauzmann W. Chem Rev. 1948;43(2):219–56.

    Article  CAS  Google Scholar 

  60. Hancock BC, Shamblin SL, Zografi G. Pharm Res. 1995;12(6):799–806.

    Article  CAS  PubMed  Google Scholar 

  61. Hatley RH. Pharm Dev Technol. 1997;2(3):257–64.

    Article  CAS  PubMed  Google Scholar 

  62. Zhou D, Zhang GG, Law D, Grant DJ, Schmitt EA. J Pharm Sci. 2002;91(8):1863–72.

    Article  CAS  PubMed  Google Scholar 

  63. Li S, Dickinson L, Chinachoti P. J Agric Food Chem. 1998;46(1):62–71.

    Article  CAS  PubMed  Google Scholar 

  64. Meste ML, Champion D, Roudaut G, Blond G, Simatos D. J Food Sci. 2002;67(7):2444–58.

    Article  Google Scholar 

  65. Koenig SH, Bryant RG, Hallenga K, Jacob GS. Biochemistry. 1978;17(20):4348–58.

    Article  CAS  PubMed  Google Scholar 

  66. Shirley WM, Bryant RG. J Am Chem Soc. 1982;104(10):2910–8.

    Article  CAS  Google Scholar 

  67. Wise WB, Pfeffer PE. Macromolecules. 1987;20(7):1550–4.

    Article  CAS  Google Scholar 

  68. Ong MH, Whitehouse AS, Abeysekera R, Al-Ruqaie IM, Kasapis S. Food Hydrocolloids. 1998;12(3):273–81.

    Article  CAS  Google Scholar 

  69. Herzog B, Gardner DJ, Lopez-Anido R, Goodell B. J Appl Polym Sci. 2005;97(6):2221–9.

    Article  CAS  Google Scholar 

  70. Rahman MS, Al-Saidi GS. Int J Food Prop. 2010;13(4):931–44.

    Article  CAS  Google Scholar 

  71. Fernández-Blázquez JP, Bello A, Pérez E. Polymer. 2005;46(23):10004–10.

    Article  Google Scholar 

  72. Watanabe H, Tang CQ, Suzuki T, Mihori T. J Food Eng. 1996;29(3–4):317–27.

    Article  Google Scholar 

  73. Nicholls R, Appelqvist I, Davies A, Ingman S, Lillford P. J Cereal Sci. 1995;21(1):25–36.

    Article  CAS  Google Scholar 

  74. Parker R, Smith AC. in. In: J. M. V. B. a. P. J. Lillford, editor. The Glassy states in foods. Leicestershire: Lillford. Nottingham University Press; 1993. p. 519–22.

    Google Scholar 

  75. Bikiaris D, Prinos J, Botev M, Betchev C, Panayiotou C. J Appl Polym Sci. 2004;93(2):726–35.

    Article  CAS  Google Scholar 

  76. Cocero A, Kokini J. J Rheol. 1991;35(2):257–70.

    Article  CAS  Google Scholar 

  77. Kelley SS, Rials TG, Glasser WG. J Mater Sci. 1987;22(2):617–24.

    Article  CAS  Google Scholar 

  78. Ivanova K, Pethrick R, Affrossman S. Polymer. 2000;41(18):6787–96.

    Article  CAS  Google Scholar 

  79. Kasapis S. Food Hydrocolloids. 2006;20(2–3):218–28.

    Article  CAS  Google Scholar 

  80. Miura K, Kimura N, Suzuki H, Miyashita Y, Nishio Y. Carbohyd Polym. 1999;39(2):139–44.

    Article  CAS  Google Scholar 

  81. Sitnitsky A. J Biomol Struct Dyn. 2002;19(4):595–605.

    Article  CAS  PubMed  Google Scholar 

  82. W. MacKnight, F. Karasz and J. Fried, In Polymer blends (Elsevier, 1978), pp. 185–242.

  83. H. Chanvrier, G. Della Valle and D. Lourdin, Carbohyd Polym 65 (3), 346–356 (2006).

  84. Dean KM, Cook WD, Lin MY. Eur Polym J. 2006;42(10):2872–87.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express thanks to the Sultan Qaboos University for its support towards this research project. This work was funded by the His Majesty Trust Funds (SR/AGR/FOOD/19/01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasser Al-Habsi.

Ethics declarations

Conflict of interest

We wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Human and animal participation

We further confirm that any aspect of the work covered in this manuscript that has involved human patients has been conducted with the ethical approval of all relevant bodies and that such approvals are acknowledged within the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Khalili, M., Al-Habsi, N., Al-Khusaibi, M. et al. Proton, thermal and mechanical relaxation characteristics of a complex biomaterial (de-fatted date-pits) as a function of temperature. J Therm Anal Calorim 148, 3525–3534 (2023). https://doi.org/10.1007/s10973-023-11943-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-11943-6

Keywords

Navigation