Skip to main content
Log in

The effect of flow-induced vibrations on the performance of heat exchangers

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The current study investigates the enhancement of the heat transfer rate of a fin tube radiator through the structural vibration without compromising its structural integrity. A fin tube radiator with fan is fixed on an electrodynamic shaker, and tests are performed at various frequencies under vertical and horizontal vibrations. These tests entail the variations in various parameters at different air flow velocities. A detailed study is presented to compare the effect of the different vibrational mode of the structure on the enhancement of the heat transfer rate. In this regard, the mode shapes are determined via simulation and experimentation. It has been observed that the second mode of vibration corresponds to the maximum total deformation in the radiator structure for a given excitation. Thus, water and air flow becomes more turbulent, resulting in the maximum temperature difference between inlet and outlet. The extensive experimentation indicates that the air-side pressure drop by vertical and horizontal forced vibration increased by 24.96% and 18.91%, respectively. Maximum overall heat transfer coefficient of the radiator increased by 49.78% and 47.39% by vertical and horizontal vibrations, respectively. The vibration disturbance enhanced the effectiveness of the radiator by 25.7% and 23.72% as a result of vertical and horizontal vibrations, respectively. Hence, a comparison between vertical and horizontal vibrations is made. In conclusion, it is noted that convective heat transfer of the radiator is enhanced by increasing frequency, vibration amplitude and wind speed. However, the effectiveness of the system is decreased as a result of increasing wind speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

\(A_{{\text{a}}}\) :

Air-side surface area (m2)

\(Cp_{{\text{w}}}\) :

Specific heat of water

\(A_{{\text{w}}}\) :

Water side surface area (m2)

\(Cp_{{\text{a}}}\) :

Specific heat of air

\(n_{{{\text{tubes}}}}\) :

Total number of radiator tubes

\(T_{{{\text{w}},{\text{in}}}}\) :

Water inlet temperature (°C)

\(f\) :

Fins of the radiator

\(T_{{{\text{w}},{\text{out}}}}\) :

Water outlet temperature (°C)

t :

Tubes of the radiator

\(T_{{{\text{a}},{\text{in}}}}\) :

Air inlet temperature (°C)

r :

Radiator

\(T_{{{\text{a}},{\text{out}}}}\) :

Air outlet temperature (°C)

Q°:

Heat transfer rate (KW)

Q°max :

Maximum heat transfer rate

m°w :

Mass flow rate of water (kg s1)

F :

Correction factor

m°a :

Mass flow rate of air (kg s1)

\(\varepsilon\) :

Effectiveness

\(C_{\min }\) :

Minimum specific heat

Re:

Reynold number

\(\rho\) :

Water density (Kg m3)

V :

Water flow speed (m s1)

µ :

Water dynamic viscosity (Ns m2)

\(D_{{\text{P}}}\) :

Hydraulic diameter (m)

N :

Number of tubes

R L :

Radiator length

R w :

Radiator width

R t :

Radiator thickness

T L :

Tubes length

T w :

Tubes width

T t :

Tubes thickness

F w :

Fins width

F h :

Fins height

F t :

Fins thickness

F p :

Distance between fins

\(U_{{\text{r}}}\) :

Overall heat transfer rate of radiator (KW m2 °C1)

\(\Delta T_{{{\text{lm.CF}}}}\) :

Log mean temperature difference for cross-flow

References

  1. Wang J, Fu R, Hu X. Experimental study on EHD heat transfer enhancement with a wire electrode between two divergent fins. Appl Therm Eng. 2019;148:457–65. https://doi.org/10.1016/j.applthermaleng.2018.11.058.

    Article  Google Scholar 

  2. Amani M, Ameri M, Kasaeian A. Investigating the convection heat transfer of Fe3O4 nanofluid in a porous metal foam tube under constant magnetic field. Exp Therm Fluid Sci. 2017;82:439–49. https://doi.org/10.1016/j.expthermflusci.2016.12.003.

    Article  CAS  Google Scholar 

  3. Roy S, Saikrishnan P, Ravindran R. Role of non-uniform slot injection (suction) model on the separation of a laminar boundary layer flow. Math Comput Model. 2009;50(1–2):45–52. https://doi.org/10.1016/j.mcm.2008.12.016.

    Article  Google Scholar 

  4. Gao M, Zhang L, Zhang D, Zhang L. Experimental study on the enhancement of free convection heat transfer under the action of an electric field. Exp Therm Fluid Sci. 2019;104:9–14. https://doi.org/10.1016/j.expthermflusci.2019.02.006.

    Article  CAS  Google Scholar 

  5. Li X, Zhu D, Sun J, Mo X, Yin Y. Air side heat transfer and pressure drop of H type fin and tube bundles with in line layouts. Exp Therm Fluid Sci. 2018;96:146–53. https://doi.org/10.1016/j.expthermflusci.2018.02.029.

    Article  Google Scholar 

  6. Bhanvase BA, Sayankar SD, Kapre A, Fule PJ, Sonawane SH. Experimental investigation on intensified convective heat transfer coefficient of water based PANI nanofluid in vertical helical coiled heat exchanger. Appl Therm Eng. 2018;128:134–40. https://doi.org/10.1016/j.applthermaleng.2017.09.009.

    Article  CAS  Google Scholar 

  7. Zhou JW, Wang YG, Middelberg G, Herwig H. Unsteady jet impingement: Heat transfer on smooth and non-smooth surfaces. Int Commun Heat Mass Transf. 2009;36(2):103–10. https://doi.org/10.1016/j.icheatmasstransfer.2008.10.020.

    Article  CAS  Google Scholar 

  8. Alamgholilou A, Esmaeilzadeh E. Experimental investigation on hydrodynamics and heat transfer of fluid flow into channel for cooling of rectangular ribs by passive and EHD active enhancement methods. Exp Therm Fluid Sci. 2012;38:61–73. https://doi.org/10.1016/j.expthermflusci.2011.11.008.

    Article  Google Scholar 

  9. Saberi B. The role of the automobile industry in the economy of developed countries. Int Robot Autom J. 2018. https://doi.org/10.15406/iratj.2018.04.00119.

    Article  Google Scholar 

  10. Patil VR, Patil SS, Kumbhar V. Review of problems of heat transfer in Car radiator and suggested solutions. Int J Sci Develop Res (IJSDR). 2017;2(1):5.

    Google Scholar 

  11. Talebi M, Setareh M, Saffar-Avval M, Hosseini Abardeh R. Numerical investigation of natural convection heat transfer in a cylindrical enclosure due to ultrasonic vibrations. Ultrasonics. 2017;76:52–62. https://doi.org/10.1016/j.ultras.2016.12.010.

    Article  CAS  PubMed  Google Scholar 

  12. Tian M, Cheng L, Lin Y, Zhang G. Heat transfer enhancement by crossflow-induced vibration. Heat Transfer Asian Res. 2004;33(4):211–8. https://doi.org/10.1002/htj.20012.

    Article  Google Scholar 

  13. Mohammed AM, Kapan S, Sen M, Celi̇k N. Effect of vibration on heat transfer and pressure drop in a heat exchanger with turbulator. Case Stud Therm Eng. 2012;28:101680. https://doi.org/10.1016/j.csite.2021.101680.

    Article  Google Scholar 

  14. Bash A, Alkumait A, Yaseen H. Experimental investigation of the influence of mechanical forced vibrations and heat flux on coefficient of heat transfer. Sci J Univ Zakho. 2018;6(3):124–9. https://doi.org/10.25271/sjuoz.2018.6.3.519.

    Article  Google Scholar 

  15. Lyman AC, Stephan RA, Thole KA, Zhang LW, Memory SB. Scaling of heat transfer coefficients along louvered fins. Exp Therm Fluid Sci. 2002;26(5):547–63. https://doi.org/10.1016/S0894-1777(02)00163-2.

    Article  Google Scholar 

  16. Qi Z, Chen J, Chen Z. Parametric study on the performance of a heat exchanger with corrugated louvered fins. Appl Therm Eng. 2007;27(2–3):539–44. https://doi.org/10.1016/j.applthermaleng.2006.06.015.

    Article  CAS  Google Scholar 

  17. Zhang X, Tafti DK. Flow efficiency in multi-louvered fins. Int J Heat Mass Transf. 2003;46(10):1737–50. https://doi.org/10.1016/S0017-9310(02)00482-9.

    Article  Google Scholar 

  18. Vaisi A, Esmaeilpour M, Taherian H. Experimental investigation of geometry effects on the performance of a compact louvered heat exchanger. Appl Therm Eng. 2011;31(16):3337–46. https://doi.org/10.1016/j.applthermaleng.2011.06.014.

    Article  Google Scholar 

  19. T’Joen C, Huisseune H, Canière H, Steeman HJ, Willockx A, De Paepe M. Interaction between mean flow and thermo-hydraulic behaviour in inclined louvered fins. Int J Heat Mass Transf. 2011;54(4):826–37. https://doi.org/10.1016/j.ijheatmasstransfer.2010.10.020.

    Article  CAS  Google Scholar 

  20. Hans VS, Saini RP, Saini JS. Performance of artificially roughened solar air heaters—A review. Renew Sustain Energy Rev. 2009;13(8):1854–69. https://doi.org/10.1016/j.rser.2009.01.030.

    Article  Google Scholar 

  21. Biswas G, Chattopadhyay H, Sinha A. Augmentation of heat transfer by creation of streamwise longitudinal vortices using vortex generators. Heat Transf Eng. 2012;33(4–5):406–24. https://doi.org/10.1080/01457632.2012.614150.

    Article  CAS  Google Scholar 

  22. Promvonge P, Thianpong C. Thermal performance assessment of turbulent channel flows over different shaped ribs. Int Commun Heat Mass Transf. 2008;35(10):1327–34. https://doi.org/10.1016/j.icheatmasstransfer.2008.07.016.

    Article  Google Scholar 

  23. Bhattacharyya S, Chattopadhyay H, Benim AC. Computational investigation of heat transfer enhancement by alternating inclined ribs in tubular heat exchanger. 7.

  24. Setareh M, Saffar-Avval M, Abdullah A. Experimental and numerical study on heat transfer enhancement using ultrasonic vibration in a double-pipe heat exchanger. Appl Therm Eng. 2019;159:113867. https://doi.org/10.1016/j.applthermaleng.2019.113867.

    Article  Google Scholar 

  25. Durmuş A, Durmuş A, Esen M. Investigation of heat transfer and pressure drop in a concentric heat exchanger with snail entrance. Appl Therm Eng. 2002;22(3):321–2. https://doi.org/10.1016/S1359-4311(01)00078-3.

    Article  Google Scholar 

  26. Lu Y, Wang Y, Zhu L, Wang Q. Enhanced performance of heat recovery ventilator by airflow-induced film vibration (HRV performance enhanced by FIV). Int J Therm Sci. 2010;49(10):2037–41. https://doi.org/10.1016/j.ijthermalsci.2010.06.001.

    Article  Google Scholar 

  27. Amiri Delouei A, Sajjadi H, Mohebbi R, Izadi M. Experimental study on inlet turbulent flow under ultrasonic vibration: pressure drop and heat transfer enhancement. Ultrason Sonochem. 2019;51:151–9. https://doi.org/10.1016/j.ultsonch.2018.10.032.

    Article  CAS  PubMed  Google Scholar 

  28. Ozgen F, Esen M, Esen H. Experimental investigation of thermal performance of a double-flow solar air heater having aluminium cans. Renew Energy. 2009;34(11):2391–8. https://doi.org/10.1016/j.renene.2009.03.029.

    Article  CAS  Google Scholar 

  29. Esen H, Ozgen F, Esen M, Sengur A. Modelling of a new solar air heater through least-squares support vector machines. Expert Syst Appl. 2009;36(7):10673–82. https://doi.org/10.1016/j.eswa.2009.02.045.

    Article  Google Scholar 

  30. Esen H, Ozgen F, Esen M, Sengur A. Artificial neural network and wavelet neural network approaches for modelling of a solar air heater. Expert Syst Appl. 2009;36(8):11240–8. https://doi.org/10.1016/j.eswa.2009.02.073.

    Article  Google Scholar 

  31. Tian Z, et al. Turbulent flows in a spiral double-pipe heat exchanger: optimal performance conditions using an enhanced genetic algorithm. Int J Numer Methods Heat Fluid Flow. 2019;30(1):39–53. https://doi.org/10.1108/HFF-04-2019-0287.

    Article  Google Scholar 

  32. Dwivedi VD, Rai R. Design and performance analysis of louvered fin automotive radiator using CAE tools. Int J Eng Res. 2015;4:5.

    Google Scholar 

  33. Kahani M, Zeinali Heris S, Mousavi SM. Experimental investigation of TiO2/water nanofluid laminar forced convective heat transfer through helical coiled tube. Heat Mass Transf. 2014;50(11):1563–73. https://doi.org/10.1007/s00231-014-1367-4.

    Article  CAS  Google Scholar 

  34. Masoud Hosseini S, Safaei MR, Estellé P, Hadi Jafarnia S. Heat transfer of water-based carbon nanotube nanofluids in the shell and tube cooling heat exchangers of the gasoline product of the residue fluid catalytic cracking unit. J Therm Anal Calorim. 2020;140(1):351–62. https://doi.org/10.1007/s10973-019-08813-5.

    Article  CAS  Google Scholar 

  35. Bahiraei M, Kiani Salmi H, Safaei MR. Effect of employing a new biological nanofluid containing functionalized graphene nanoplatelets on thermal and hydraulic characteristics of a spiral heat exchanger. Energy Convers Manag. 2019;180:72–82. https://doi.org/10.1016/j.enconman.2018.10.098.

    Article  CAS  Google Scholar 

  36. Nagarajan FC, Kannaiyan SK, Boobalan C. A Proficient approach to enhance heat transfer using cupric oxide/silica hybrid nanoliquids. J Therm Anal Calorim. 2022;147:5589–98. https://doi.org/10.1007/s10973-021-10956-3.

    Article  CAS  Google Scholar 

  37. Tafakhori M, Kalantari D, Biparva P, et al. Assessment of Fe3O4–water nanofluid for enhancing laminar convective heat transfer in a car radiator. J Therm Anal Calorim. 2021;146:841–53. https://doi.org/10.1007/s10973-020-10034-0.

    Article  CAS  Google Scholar 

  38. Sahoo RR. Heat transfer and second law characteristics of radiator with dissimilar shape nanoparticle-based ternary hybrid nanofluid. J Therm Anal Calorim. 2021;146:827–39. https://doi.org/10.1007/s10973-020-10039-9.

    Article  CAS  Google Scholar 

  39. Li D, et al. Experimental research on vibration-enhanced heat transfer of fin-tube vehicle radiator. Appl Therm Eng. 2020;180:115836. https://doi.org/10.1016/j.applthermaleng.2020.115836.

    Article  Google Scholar 

  40. Kline SJ. The purposes of uncertainty analysis. J Fluids Eng. 1985;107(2):153–60. https://doi.org/10.1115/1.3242449.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Zeeshan Ali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, M.Z., Umer, M., Khan, T.I. et al. The effect of flow-induced vibrations on the performance of heat exchangers. J Therm Anal Calorim 148, 2615–2627 (2023). https://doi.org/10.1007/s10973-022-11923-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11923-2

Keywords

Navigation