Skip to main content
Log in

Is there interaction between forestry residue and crop residue in co-pyrolysis? Evidence from wood sawdust and peanut shell

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Numerous studies have shown that co-pyrolysis of biomass with other materials (i.e., coal and municipal waste) can result in better overall performance. However, both forestry residue and crop residue are subclasses of biomass, and there are few studies on whether they interact with each other during co-pyrolysis. In this study, five mixture pellets of wood sawdust (WS) and peanut shell (PS) were prepared using five different mixing ratios (WS:PS = 10:0, 7:3, 5:5, 3:7, and 0:10). Co-pyrolysis experiments were conducted using a thermogravimetric analyzer and Fourier transform infrared spectroscopy. Compared with WS and PS alone, W3P7 (WS:PS = 3:7) increased the comprehensive pyrolysis index by 15.0–27.8%, 20.8–96.1%, and 17.9–88.0% at heating rates of 10, 20, and 30 K min−1, respectively. In the pyrolysis of the five samples, the reaction mechanism during the rapid mass loss period was most likely random nucleation and subsequent growth. Combined with the results of the thermodynamic and kinetic analyses, W3P7 had the best pyrolysis performance. This study can deepen the understanding of the thermochemical reaction of mixtures composed of forestry residue and crop residue, which will be helpful for further modeling and simulation of co-pyrolysis of PS and WS in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

WS:

Wood sawdust

PS:

Peanut shell

LHV:

Low heating value (kJ kg1)

HHV:

High heating value (kJ kg1)

TGA:

Thermogravimetric analyzer

FTIR:

Fourier transform infrared spectroscopy

DTG:

Derivative thermogravimetric (\(\mathrm{\% }{\mathrm{min}}^{-1}\))

\({\mathrm{DTG}}_{\mathrm{max}}\) :

Maximum mass loss rate (\(\mathrm{\% }{\mathrm{min}}^{-1}\))

\({\mathrm{DTG}}_{\mathrm{mean}}\) :

Mean mass loss rate (\(\mathrm{\% }{\mathrm{min}}^{-1}\))

CPI:

Comprehensive pyrolysis index

\({T}_{\mathrm{i}}\) :

Initial temperature (K)

\({T}_{\mathrm{p}}\) :

Peak temperature at the maximum mass loss rate (K)

\({\Delta T}_{1/2}\) :

Interval between the two temperatures when DTG/\({\mathrm{DTG}}_{\mathrm{max}}\) = \(1/2\) (K)

\({E}_{\alpha }\) :

Activation energy (kJ mol1)

A:

Pre-exponential factor (\({\text{s}}^{-1}\))

\(\alpha\) :

Conversion degree

\(\beta\) :

Heating rate (\(\mathrm{K }{\mathrm{min}}^{-1}\))

KAS:

Kissinger–Akahira–Sunose method

FWO:

Flynn–wall–Ozawa method

CR:

Coats–Redfern method

G(\(\alpha\)):

Reaction mechanism function in integral form

\(f\left(\alpha \right)\) :

Reaction model function

R :

Universal gas constant [8.314 J mol1 K1]

\(\Delta H\) :

Change in enthalpy (kJ mol1)

\(\Delta G\) :

Change in free Gibbs energy (kJ mol1)

\(\Delta S\) :

Change in entropy (J mol1)

\({K}_{\mathrm{B}}\) :

Boltzmann constant (\(1.381\times {10}^{-23}\) J K1)

h :

Planck constant (\(6.626\times {10}^{-34}\) J s)

References

  1. Ho DP, Huu Hao N, Guo W. A mini review on renewable sources for biofuel. Biores Technol. 2014;169:742–9. https://doi.org/10.1016/j.biortech.2014.07.022.

    Article  CAS  Google Scholar 

  2. Moreira JR, Pacca SA, Goldemberg J. The role of biomass in meeting the Paris agreement. In: Kyriakopoulos GL, editor. 2019 international conference on new energy and future energy system. IOP conference series-earth and environmental science, 2019

  3. Wang G, Dai Y, Yang H, Xiong Q, Wang K, Zhou J, et al. A review of recent advances in biomass pyrolysis. Energy Fuels. 2020;34(12):15557–78. https://doi.org/10.1021/acs.energyfuels.0c03107.

    Article  CAS  Google Scholar 

  4. Sekar M, Mathimani T, Alagumalai A, Nguyen Thuy Lan C, Pham Anh D, Bhatia SK, et al. A review on the pyrolysis of algal biomass for biochar and bio-oil - Bottlenecks and scope. Fuel. 2021;283:119190. https://doi.org/10.1016/j.fuel.2020.119190.

    Article  CAS  Google Scholar 

  5. Li Y, Nord N, Huang G, Li X. Swimming pool heating technology: a state-of-the-art review. Build Simul. 2021;14(3):421–40. https://doi.org/10.1007/s12273-020-0669-3.

    Article  CAS  Google Scholar 

  6. Tang L, Yu J, Pang Y, Zeng G, Deng Y, Wang J, et al. Sustainable efficient adsorbent: alkali-acid modified magnetic biochar derived from sewage sludge for aqueous organic contaminant removal. Chem Eng J. 2018;336:160–9. https://doi.org/10.1016/j.cej.2017.11.048.

    Article  CAS  Google Scholar 

  7. Dissanayake PD, You S, Igalavithana AD, Xia Y, Bhatnagar A, Gupta S, et al. Biochar-based adsorbents for carbon dioxide capture: a critical review. Renew Sustain Energy Rev. 2020;119:109582. https://doi.org/10.1016/j.rser.2019.109582.

    Article  CAS  Google Scholar 

  8. Nguyen Thuy Lan C, Anto S, Ahamed TS, Kumar SS, Shanmugam S, Samuel MS, et al. A review on biochar production techniques and biochar based catalyst for biofuel production from algae. Fuel. 2021;287:119411. https://doi.org/10.1016/j.fuel.2020.119411.

    Article  CAS  Google Scholar 

  9. Qian K, Kumar A, Zhang H, Bellmer D, Huhnke R. Recent advances in utilization of biochar. Renew Sustain Energy Rev. 2015;42:1055–64. https://doi.org/10.1016/j.rser.2014.10.074.

    Article  CAS  Google Scholar 

  10. Yu H, Zou W, Chen J, Chen H, Yu Z, Huang J, et al. Biochar amendment improves crop production in problem soils: a review. J Environ Manage. 2019;232:8–21. https://doi.org/10.1016/j.jenvman.2018.10.117.

    Article  CAS  PubMed  Google Scholar 

  11. Tripathi M, Sahu JN, Ganesan P. Effect of process parameters on production of biochar from biomass waste through pyrolysis: a review. Renew Sustain Energy Rev. 2016;55:467–81. https://doi.org/10.1016/j.rser.2015.10.122.

    Article  CAS  Google Scholar 

  12. Zhang Z, Zhu Z, Shen B, Liu L. Insights into biochar and hydrochar production and applications: a review. Energy. 2019;171:581–98. https://doi.org/10.1016/j.energy.2019.01.035.

    Article  CAS  Google Scholar 

  13. Li Y, Xing B, Ding Y, Han X, Wang S. A critical review of the production and advanced utilization of biochar via selective pyrolysis of lignocellulosic biomass. Bioresour Technol. 2020;312:123614. https://doi.org/10.1016/j.biortech.2020.123614.

    Article  CAS  PubMed  Google Scholar 

  14. Zhu SH, Bai YH, Yan LJ, Hao QL, Li F. Characteristics and synergistic effects of co-pyrolysis of Yining coal and poplar sawdust. Chem Ind Chem Eng Q. 2016;22(1):1–8. https://doi.org/10.2298/Ciceq141125012z.

    Article  Google Scholar 

  15. Chen XY, Liu L, Zhang LY, Zhao Y, Qiu PH. Pyrolysis characteristics and kinetics of coal-biomass blends during co-pyrolysis. Energy Fuels. 2019;33(2):1267–78. https://doi.org/10.1021/acs.energyfuels.8b03987.

    Article  CAS  Google Scholar 

  16. Liu GQ, Liu K, Gao YK, Chen G. Co-pyrolysis kinetics analysis of stone coal and biomass for vanadium extraction. Metalurgija. 2018;57(4):239–41.

    CAS  Google Scholar 

  17. Park DK, Kim SD, Lee SH, Lee JG. Co-pyrolysis characteristics of sawdust and coal blend in TGA and a fixed bed reactor. Bioresour Technol. 2010;101(15):6151–6. https://doi.org/10.1016/j.biortech.2010.02.087.

    Article  CAS  PubMed  Google Scholar 

  18. Zuo W, Jin B, Huang Y, Sun Y. Characterization of top phase oil obtained from co-pyrolysis of sewage sludge and poplar sawdust. Environ Sci Pollut Res. 2014;21(16):9717–26. https://doi.org/10.1007/s11356-014-2887-7.

    Article  CAS  Google Scholar 

  19. Oyedun AO, Tee CZ, Hanson S, Hui CW. Thermogravimetric analysis of the pyrolysis characteristics and kinetics of plastics and biomass blends. Fuel Process Technol. 2014;128:471–81. https://doi.org/10.1016/j.fuproc.2014.08.010.

    Article  CAS  Google Scholar 

  20. Wang X, Ma D, Jin Q, Deng S, Stancin H, Tan H, et al. Synergistic effects of biomass and polyurethane co-pyrolysis on the yield, reactivity, and heating value of biochar at high temperatures. Fuel Process Technol. 2019;194:106127. https://doi.org/10.1016/j.fuproc.2019.106127.

    Article  CAS  Google Scholar 

  21. Hoang AT, Ong HC, Fattah IMR, Chong CT, Cheng CK, Sakthivel R, et al. Progress on the lignocellulosic biomass pyrolysis for biofuel production toward environmental sustainability. Fuel Process Technol. 2021;223:106997. https://doi.org/10.1016/j.fuproc.2021.106997.

    Article  CAS  Google Scholar 

  22. Mack R, Kuptz D, Schön C, Hartmann H. Combustion behavior and slagging tendencies of kaolin additivated agricultural pellets and of wood-straw pellet blends in a small-scale boiler. Biomass Bioenerg. 2019;125:50–62. https://doi.org/10.1016/j.biombioe.2019.04.003.

    Article  CAS  Google Scholar 

  23. Chen C, Park T, Wang X, Piao S, Xu B, Chaturvedi RK, et al. China and India lead in greening of the world through land-use management. Nat Sustain. 2019;2(2):122–9. https://doi.org/10.1038/s41893-019-0220-7.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Fu T, Ke JH, Zhou S, Xie GH. Estimation of the quantity and availability of forestry residue for bioenergy production in China. Resour, Conserv Recycl. 2020;162:104993. https://doi.org/10.1016/j.resconrec.2020.104993.

    Article  Google Scholar 

  25. Sun H, Wang E, Li X, Cui X, Guo J, Dong R. Potential biomethane production from crop residues in China: contributions to carbon neutrality. Renew Sustain Energy Rev. 2021;148:111360. https://doi.org/10.1016/j.rser.2021.111360.

    Article  CAS  Google Scholar 

  26. Cheng W, Zhang Y, Wang P. Effect of spatial distribution and number of raw material collection locations on the transportation costs of biomass thermal power plants. Sustain Cities Soc. 2020;55:102040. https://doi.org/10.1016/j.scs.2020.102040.

    Article  Google Scholar 

  27. NBSPRC. China statistical yearbook. China statistic press, Beijing, 2021.

  28. Mian I, Li X, Dacres OD, Wang J, Wei B, Jian Y, et al. Combustion kinetics and mechanism of biomass pellet. Energy. 2020;205:117909. https://doi.org/10.1016/j.energy.2020.117909.

    Article  CAS  Google Scholar 

  29. Zhong S, Zhang B, Liu C, Shujaa aldeen A. Mechanism of synergistic effects and kinetics analysis in catalytic co-pyrolysis of water hyacinth and HDPE. Energy Conver Manag. 2021;228:113717. https://doi.org/10.1016/j.enconman.2020.113717.

    Article  CAS  Google Scholar 

  30. Li D, Lei S, Rajput G, Zhong L, Ma W, Chen G. Study on the co-pyrolysis of waste tires and plastics. Energy. 2021;226:120381. https://doi.org/10.1016/j.energy.2021.120381.

    Article  CAS  Google Scholar 

  31. Fan Y, Li L, Tippayawong N, Xia S, Cao F, Yang X, et al. Quantitative structure-reactivity relationships for pyrolysis and gasification of torrefied xylan. Energy. 2019;188:116119. https://doi.org/10.1016/j.energy.2019.116119.

    Article  CAS  Google Scholar 

  32. Wang C, Bi H, Lin Q, Jiang X, Jiang C. Co-pyrolysis of sewage sludge and rice husk by TG–FTIR–MS: pyrolysis behavior, kinetics, and condensable/non-condensable gases characteristics. Renew Energy. 2020;160:1048–66. https://doi.org/10.1016/j.renene.2020.07.046.

    Article  CAS  Google Scholar 

  33. Alam M, Bhavanam A, Jana A, JkS Viroja, Peela NR. Co-pyrolysis of bamboo sawdust and plastic: synergistic effects and kinetics. Renew Energy. 2020;149:1133–45. https://doi.org/10.1016/j.renene.2019.10.103.

    Article  CAS  Google Scholar 

  34. Bi H, Wang C, Jiang X, Jiang C, Bao L, Lin Q. Thermodynamics, kinetics, gas emissions and artificial neural network modeling of co-pyrolysis of sewage sludge and peanut shell. Fuel. 2021;284:118988. https://doi.org/10.1016/j.fuel.2020.118988.

    Article  CAS  Google Scholar 

  35. Zaker A, Chen Z, Zaheer-Uddin M, Guo J. Co-pyrolysis of sewage sludge and low-density polyethylene – a thermogravimetric study of thermo-kinetics and thermodynamic parameters. J Environ Chem Eng. 2021;9(1):104554. https://doi.org/10.1016/j.jece.2020.104554.

    Article  CAS  Google Scholar 

  36. Rasam S, Moshfegh Haghighi A, Azizi K, Soria-Verdugo A, Keshavarz MM. Thermal behavior, thermodynamics and kinetics of co-pyrolysis of binary and ternary mixtures of biomass through thermogravimetric analysis. Fuel. 2020;280:118665. https://doi.org/10.1016/j.fuel.2020.118665.

    Article  CAS  Google Scholar 

  37. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Japan. 1965;38(11):1881. https://doi.org/10.1246/bcsj.38.1881.

    Article  CAS  Google Scholar 

  38. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6. https://doi.org/10.1021/ac60131a045.

    Article  CAS  Google Scholar 

  39. Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201(491):68–000. https://doi.org/10.1038/201068a0.

    Article  CAS  Google Scholar 

  40. Rongzu H, Shengli G, Fengqi Z, Qizhen S, Tonglai Z, Jianjun Z. Thermal analysis kinetics. Beijing: Science press; 2008.

    Google Scholar 

  41. Li H, Xia S, Ma P. Upgrading fast pyrolysis oil: Solvent-anti-solvent extraction and blending with diesel. Energy Convers Manage. 2016;110:378–85. https://doi.org/10.1016/j.enconman.2015.11.043.

    Article  CAS  Google Scholar 

  42. Xu Y, Chen B. Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis. Biores Technol. 2013;146:485–93. https://doi.org/10.1016/j.biortech.2013.07.086.

    Article  CAS  Google Scholar 

  43. Ahmad MS, Mehmood MA, Al Ayed OS, Ye G, Luo H, Ibrahim M, et al. Kinetic analyses and pyrolytic behavior of Para grass (Urochloa mutica) for its bioenergy potential. Biores Technol. 2017;224:708–13. https://doi.org/10.1016/j.biortech.2016.10.090.

    Article  CAS  Google Scholar 

  44. Mishra RK, Mohanty K. Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis. Biores Technol. 2018;251:63–74. https://doi.org/10.1016/j.biortech.2017.12.029.

    Article  CAS  Google Scholar 

  45. Xu Z, Xiao X, Fang P, Ye L, Huang J, Wu H, et al. Comparison of combustion and pyrolysis behavior of the peanut shells in Air and N-2: kinetics, thermodynamics and gas emissions. Sustainability. 2020;12(2):464. https://doi.org/10.3390/su12020464.

    Article  CAS  Google Scholar 

  46. Caballero JA, Conesa JA, Font R, Marcilla A. Pyrolysis kinetics of almond shells and olive stones considering their organic fractions. J Anal Appl Pyrol. 1997;42(2):159–75. https://doi.org/10.1016/S0165-2370(97)00015-6.

    Article  CAS  Google Scholar 

  47. Helsen L, Van den Bulck E, Mullens S, Mullens J. Low-temperature pyrolysis of CCA-treated wood: thermogravimetric analysis. J Anal Appl Pyrol. 1999;52(1):65–86. https://doi.org/10.1016/S0165-2370(99)00034-0.

    Article  CAS  Google Scholar 

  48. Khan AS, Man Z, Bustam MA, Kait CF, Ullah Z, Nasrullah A, et al. Kinetics and thermodynamic parameters of ionic liquid pretreated rubber wood biomass. J Mol Liq. 2016;223:754–62. https://doi.org/10.1016/j.molliq.2016.09.012.

    Article  CAS  Google Scholar 

  49. Mureddu M, Dessì F, Orsini A, Ferrara F, Pettinau A. Air- and oxygen-blown characterization of coal and biomass by thermogravimetric analysis. Fuel. 2018;212:626–37. https://doi.org/10.1016/j.fuel.2017.10.005.

    Article  CAS  Google Scholar 

  50. Bi H, Ni Z, Tian J, Wang C, Jiang C, Zhou W, et al. The effect of biomass addition on pyrolysis characteristics and gas emission of coal gangue by multi-component reaction model and TG-FTIR-MS. Sci Total Environ. 2021;798:149290. https://doi.org/10.1016/j.scitotenv.2021.149290.

    Article  CAS  PubMed  Google Scholar 

  51. Yang H, Yan R, Chen H, Lee DH, Zheng C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 2007;86(12):1781–8. https://doi.org/10.1016/j.fuel.2006.12.013.

    Article  CAS  Google Scholar 

  52. Pasangulapati V, Ramachandriya KD, Kumar A, Wilkins MR, Jones CL, Huhnke RL. Effects of cellulose, hemicellulose and lignin on thermochemical conversion characteristics of the selected biomass. Biores Technol. 2012;114:663–9. https://doi.org/10.1016/j.biortech.2012.03.036.

    Article  CAS  Google Scholar 

  53. Rashid T, Sher F, Khan AS, Khalid U, Rasheed T, Iqbal HMN, et al. Effect of protic ionic liquid treatment on the pyrolysis products of lignin extracted from oil palm biomass. Fuel. 2021;291:120133. https://doi.org/10.1016/j.fuel.2021.120133.

    Article  CAS  Google Scholar 

  54. Fang S, Yu Z, Ma X, Lin Y, Chen L, Liao Y. Analysis of catalytic pyrolysis of municipal solid waste and paper sludge using TG-FTIR, Py-GC/MS and DAEM (distributed activation energy model). Energy. 2018;143:517–32. https://doi.org/10.1016/j.energy.2017.11.038.

    Article  CAS  Google Scholar 

  55. Varma AK, Singh S, Rathore AK, Thakur LS, Shankar R, Mondal P. Investigation of kinetic and thermodynamic parameters for pyrolysis of peanut shell using thermogravimetric analysis. Biomass Conversion Biorefinery. 2020. https://doi.org/10.1007/s13399-020-00972-y.

    Article  Google Scholar 

  56. Kumar M, Rai D, Bhardwaj G, Upadhyay SN, Mishra PK. Pyrolysis of peanut shell: Kinetic analysis and optimization of thermal degradation process. Ind Crops Products. 2021;174:114128. https://doi.org/10.1016/j.indcrop.2021.114128.

    Article  CAS  Google Scholar 

  57. Bong JT, Loy ACM, Chin BLF, Lam MK, Tang DKH, Lim HY, et al. Artificial neural network approach for co-pyrolysis of Chlorella vulgaris and peanut shell binary mixtures using microalgae ash catalyst. Energy. 2020;207:118289. https://doi.org/10.1016/j.energy.2020.118289.

    Article  CAS  Google Scholar 

  58. Williams CL, Westover TL, Emerson RM, Tumuluru JS, Li C. Sources of biomass feedstock variability and the potential impact on biofuels production. Bioenergy Res. 2016;9(1):1–14. https://doi.org/10.1007/s12155-015-9694-y.

    Article  CAS  Google Scholar 

  59. Torres-García E, Ramírez-Verduzco LF, Aburto J. Pyrolytic degradation of peanut shell: activation energy dependence on the conversion. Waste Manage. 2020;106:203–12. https://doi.org/10.1016/j.wasman.2020.03.021.

    Article  CAS  Google Scholar 

  60. Gao N, Liu B, Li A, Li J. Continuous pyrolysis of pine sawdust at different pyrolysis temperatures and solid residence times. J Anal Appl Pyrol. 2015;114:155–62. https://doi.org/10.1016/j.jaap.2015.05.011.

    Article  CAS  Google Scholar 

  61. Gurevich Messina LI, Bonelli PR, Cukierman AL. Effect of acid pretreatment and process temperature on characteristics and yields of pyrolysis products of peanut shells. Renew Energy. 2017;114:697–707. https://doi.org/10.1016/j.renene.2017.07.065.

    Article  CAS  Google Scholar 

  62. Chu G, Zhao J, Chen F, Dong X, Zhou D, Liang N, et al. Physi-chemical and sorption properties of biochars prepared from peanut shell using thermal pyrolysis and microwave irradiation. Environ Pollut. 2017;227:372–9. https://doi.org/10.1016/j.envpol.2017.04.067.

    Article  CAS  PubMed  Google Scholar 

  63. Zhu G, Zhu X, Xiao Z, Zhou R, Yi F. Pyrolysis characteristics of bean dregs and in situ visualization of pyrolysis transformation. Waste Manage. 2012;32(12):2287–93. https://doi.org/10.1016/j.wasman.2012.07.004.

    Article  CAS  Google Scholar 

  64. Zhu G, Zhu X, Xiao Z, Zhou R, Zhu Y, Wan X. Kinetics of peanut shell pyrolysis and hydrolysis in subcritical water. J Mater Cycles Waste Manage. 2014;16(3):546–56. https://doi.org/10.1007/s10163-013-0209-7.

    Article  CAS  Google Scholar 

  65. Masnadi MS, Habibi R, Kopyscinski J, Hill JM, Bi XT, Lim CJ, et al. Fuel characterization and co-pyrolysis kinetics of biomass and fossil fuels. Fuel. 2014;117:1204–14. https://doi.org/10.1016/j.fuel.2013.02.006.

    Article  CAS  Google Scholar 

  66. Liu G-Q, Liu Q-c, Wang X-Q, Meng F, Ren S, Ji Z-p. Combustion characteristics and kinetics of anthracite blending with pine sawdust. J Iron Steel Res Int. 2015;22(9):812–7. https://doi.org/10.1016/s1006-706x(15)30075-3.

    Article  Google Scholar 

  67. Jeguirim M, Elmay Y, Limousy L, Lajili M, Said R. Devolatilization behavior and pyrolysis kinetics of potential tunisian biomass fuels. Environ Prog Sustain Energy. 2014;33(4):1452–8. https://doi.org/10.1002/ep.11928.

    Article  CAS  Google Scholar 

  68. Turmanova SC, Genieva SD, Dimitrova AS, Vlaev LT. Non-isothermal degradation kinetics of filled with rise husk ash polypropene composites. Express Polym Lett. 2008;2(2):133–46. https://doi.org/10.3144/expresspolymlett.2008.18.

    Article  CAS  Google Scholar 

  69. Müsellim E, Tahir MH, Ahmad MS, Ceylan S. Thermokinetic and TG/DSC-FTIR study of pea waste biomass pyrolysis. Appl Therm Eng. 2018;137:54–61. https://doi.org/10.1016/j.applthermaleng.2018.03.050.

    Article  CAS  Google Scholar 

  70. Aslan DI, Özoğul B, Ceylan S, Geyikçi F. Thermokinetic analysis and product characterization of Medium Density Fiberboard pyrolysis. Biores Technol. 2018;258:105–10. https://doi.org/10.1016/j.biortech.2018.02.126.

    Article  CAS  Google Scholar 

  71. Kim YS, Kim YS, Kim SH. Investigation of Thermodynamic parameters in the thermal decomposition of plastic waste−waste lube oil compounds. Environ Sci Technol. 2010;44(13):5313–7. https://doi.org/10.1021/es101163e.

    Article  CAS  PubMed  Google Scholar 

  72. Vlaev LT, Georgieva VG, Genieva SD. Products and kinetics of non-isothermal decomposition of vanadium(IV) oxide compounds. J Therm Anal Calorim. 2007;88(3):805–12. https://doi.org/10.1007/s10973-005-7149-y.

    Article  CAS  Google Scholar 

  73. Jiehan Hu XZ. Practical infrared spectroscopy. Beijing: Beijing Science Press; 2011.

    Google Scholar 

  74. Li B, Lv W, Zhang Q, Wang T, Ma L. Pyrolysis and catalytic pyrolysis of industrial lignins by TG-FTIR: Kinetics and products. J Anal Appl Pyrol. 2014;108:295–300. https://doi.org/10.1016/j.jaap.2014.04.002.

    Article  CAS  Google Scholar 

  75. Fan C, Yan J, Huang Y, Han X, Jiang X. XRD and TG-FTIR study of the effect of mineral matrix on the pyrolysis and combustion of organic matter in shale char. Fuel. 2015;139:502–10. https://doi.org/10.1016/j.fuel.2014.09.021.

    Article  CAS  Google Scholar 

  76. Yan J, Jiang X, Han X, Liu J. A TG–FTIR investigation to the catalytic effect of mineral matrix in oil shale on the pyrolysis and combustion of kerogen. Fuel. 2013;104:307–17. https://doi.org/10.1016/j.fuel.2012.10.024.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (No. 51838007, No. 52108095), the Natural Science Foundation of Sichuan Province (No. 2022NSFSC0978), the Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, and the Key Laboratory of Eco Planning & Green Building (Tsinghua University), Ministry of Education of China.

Author information

Authors and Affiliations

Authors

Contributions

YN was involved in writing the original draft, software, and investigation. MD was responsible for methodology and validation. MS contributed to conceptualization and formal analysis. XY participated in supervision and project administration.

Corresponding author

Correspondence to Xudong Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1962 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, Y., Deng, M., Shan, M. et al. Is there interaction between forestry residue and crop residue in co-pyrolysis? Evidence from wood sawdust and peanut shell. J Therm Anal Calorim 148, 2467–2481 (2023). https://doi.org/10.1007/s10973-022-11910-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11910-7

Keywords

Navigation