Skip to main content
Log in

A brief on the application of multiphase lattice Boltzmann method for boiling and evaporation

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Lattice Boltzmann method (LBM), a mesoscopic approach for numerical simulation of flow and thermal fields, is increasingly being applied to solve multiphase problems. The present work analyses and documents the current state-of-the-art in application of LBM for solving evaporation and boiling problems. The first part of the article briefly discusses the LBM framework, followed by an introduction to various multiphase lattice Boltzmann models. Further, the special modifications necessary for handling gas–liquid phase changes using available multiphase LBM are documented. The state-of-the-art shows that the pseudopotential model and phase field-based models are very effective and hence, widely used for such flows. Subsequently, the applications of multiphase LBM on boiling and evaporation have been summarized on pool boiling heat transfer, flow boiling heat transfer as well as boiling in porous media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Zhang J, Johnson PC, Popel AS. Red blood cell aggregation and dissociation in shear flows simulated by lattice Boltzmann method. J Biomech. 2008;41:47–55. https://doi.org/10.1016/j.jbiomech.2007.07.020.

    Article  PubMed  Google Scholar 

  2. Jung J, Lyczkowski RW, Panchal CB, Hassanein A. Multiphase hemodynamic simulation of pulsatile flow in a coronary artery. J Biomech. 2006;39:2064–73. https://doi.org/10.1016/j.jbiomech.2005.06.023.

    Article  PubMed  Google Scholar 

  3. Trusov PV, Zaitseva NV, Kamaltdinov MR. A multiphase flow in the antroduodenal portion of the gastrointestinal tract: a mathematical model. Comput Math Methods Med. 2016;2016:5164029. https://doi.org/10.1155/2016/5164029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Balachandar S, Zaleski S, Soldati A, Ahmadi G, Bourouiba L. Host-to-host airborne transmission as a multiphase flow problem for science-based social distance guidelines. Int J Multiph Flow. 2020;132: 103439. https://doi.org/10.1016/j.ijmultiphaseflow.2020.103439.

    Article  CAS  Google Scholar 

  5. Zhang D, Li S, Li Y, Mei N, Yuan H. Lattice Boltzmann simulation of seawater boiling in the presence of non-condensable gas. Int J Heat Mass Transf. 2019;142:118415. https://doi.org/10.1016/j.ijheatmasstransfer.2019.07.065.

    Article  Google Scholar 

  6. Abidoye LK, Khudaida KJ, Das DB. Geological carbon sequestration in the context of two-phase flow in porous media: a review. Crit Rev Environ Sci Technol. 2015;45:1105–47. https://doi.org/10.1080/10643389.2014.924184.

    Article  CAS  Google Scholar 

  7. Ramstad T, Berg CF, Thompson K. Pore-scale simulations of single- and two-phase flow in porous media: approaches and applications. Transp Porous Media. 2019;130:77–104. https://doi.org/10.1007/s11242-019-01289-9.

    Article  CAS  Google Scholar 

  8. Chattopadhyay H. Estimation of solidification time in investment casting process. Int J Adv Manuf Technol. 2011;55:35–8. https://doi.org/10.1007/s00170-010-3057-9.

    Article  Google Scholar 

  9. Dhar M, Barman N, Mandal S, Chattopadhyay H. Remelting and interface dynamics during solidification of a eutectic solution in a top-cooled rectangular cavity: a numerical study. Int J Heat Mass Transf. 2014;77:730–7. https://doi.org/10.1016/j.ijheatmasstransfer.2014.05.064.

    Article  CAS  Google Scholar 

  10. Gruselle F, Steimes J, Hendrick P. Study of a two-phase flow pump and separator system. J Eng Gas Turbines Power. 2011;133:1–8. https://doi.org/10.1115/1.4002470.

    Article  CAS  Google Scholar 

  11. Sun T, Gui N, Yang X, Tu J, Jiang S. Effect of contact angle on flow boiling in vertical ducts: a pseudo-potential MRT-thermal LB coupled study. Int J Heat Mass Transf. 2018;121:1229–33. https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.088.

    Article  Google Scholar 

  12. Shui L, Eijkel JCT, van den Berg A. Multiphase flow in micro- and nanochannels. Sens Actuators B Chem. 2007;121:263–76. https://doi.org/10.1016/j.snb.2006.09.040.

    Article  CAS  Google Scholar 

  13. Yue J. Multiphase flow processing in microreactors combined with heterogeneous catalysis for efficient and sustainable chemical synthesis. Catal Today. 2018;308:3–19. https://doi.org/10.1016/j.cattod.2017.09.041.

    Article  CAS  Google Scholar 

  14. Sayda AF, Taylor JH. Modeling and control of three-phase gravity separators in oil production facilities. Proc Am Control Conf. 2007. https://doi.org/10.1109/ACC.2007.4282265.

    Article  Google Scholar 

  15. Zhang X, Wang D, Liao R, Wang S, Shi B, Wu L. Associated petroleum gas measurement at low gas content using PIS method. Flow Meas Instrum. 2019;70: 101662. https://doi.org/10.1016/j.flowmeasinst.2019.101662.

    Article  Google Scholar 

  16. Lakehal D. Advanced simulation of transient multiphase flow and flow assurance in the oil and gas industry. Can J Chem Eng. 2013;91:1201–14. https://doi.org/10.1002/cjce.21828.

    Article  CAS  Google Scholar 

  17. Zheng S, Luo Z, Zhang X, Zhou H. Distributed parameters modeling for evaporation system in a once-through coal-fired twin-furnace boiler. Int J Therm Sci Elsevier Masson SAS. 2011;50:2496–505. https://doi.org/10.1016/j.ijthermalsci.2011.07.010.

    Article  Google Scholar 

  18. Mohammed HI, Giddings D, Walker GS, Power H. CFD multiphase modelling for the nanofluid boiling of the salt solution in a symmetric rectangular boiler. Proc CHT-17 ICHMT int symp adv comput heat transf. Begel House Inc.; 2017.

  19. Bao J, Wang D, Liu F, Qu Z, Xu H. Transient evaporation simulation of the forced circulation hot water boiler. IOP Conf Ser Mater Sci Eng. 2020;721:12068. https://doi.org/10.1088/1757-899x/721/1/012068.

    Article  CAS  Google Scholar 

  20. Liu X, Cheng P. Lattice Boltzmann simulation for dropwise condensation of vapor along vertical hydrophobic flat plates. Int J Heat Mass Transf. 2013;64:1041–52. https://doi.org/10.1016/j.ijheatmasstransfer.2013.05.042.

    Article  Google Scholar 

  21. Mohammed HI, Giddings D, Walker GS. CFD multiphase modelling of the acetone condensation and evaporation process in a horizontal circular tube. Int J Heat Mass Transf. 2019;134:1159–70. https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.062.

    Article  CAS  Google Scholar 

  22. Szijártó R, Badillo A, Ničeno B, Prasser H-M. Condensation models for the water–steam interface and the volume of fluid method. Int J Multiph Flow. 2017;93:63–70. https://doi.org/10.1016/j.ijmultiphaseflow.2017.04.002.

    Article  CAS  Google Scholar 

  23. Gong S, Cheng P, Quan X. Lattice Boltzmann simulation of droplet formation in microchannels under an electric field. Int J Heat Mass Transf. 2010;53:5863–70. https://doi.org/10.1016/j.ijheatmasstransfer.2010.07.057.

    Article  CAS  Google Scholar 

  24. Feng Y, Li H, Guo K, Lei X, Zhao J. Numerical investigation on bubble dynamics during pool nucleate boiling in presence of a non-uniform electric field by LBM. Appl Therm Eng Elsevier. 2019;155:637–49. https://doi.org/10.1016/j.applthermaleng.2019.04.110.

    Article  Google Scholar 

  25. Almasi F, Shadloo MS, Hadjadj A, Ozbulut M, Tofighi N, Yildiz M. Numerical simulations of multi-phase electro-hydrodynamics flows using a simple incompressible smoothed particle hydrodynamics method. Comput Math with Appl. 2021;81:772–85. https://doi.org/10.1016/j.camwa.2019.10.029.

    Article  Google Scholar 

  26. Rahmanpour M, Ebrahimi R, Pourrajabian A. Numerical simulation of two-phase electrohydrodynamic of stable Taylor cone–jet using a volume-of-fluid approach. J Brazilian Soc Mech Sci Eng. 2017;39:4443–53. https://doi.org/10.1007/s40430-017-0832-7.

    Article  Google Scholar 

  27. Berry RA, Saurel R, Petitpas F, Daniel E, Le Métayer O, Gavrilyuk S, et al. Progress in the development of compressible, multiphase flow modeling capability for nuclear reactor flow applications. Idaho National Lab.(INL), Idaho Falls, ID (United States); 2008.

  28. Pourtousi M, Zeinali M, Ganesan P, Sahu JN. Prediction of multiphase flow pattern inside a 3D bubble column reactor using a combination of CFD and ANFIS. Rsc Adv Royal Society of Chemistry. 2015;5:85652–72. https://doi.org/10.1039/c5ra11583c.

    Article  CAS  Google Scholar 

  29. Higashi H, Iwai Y, Arai Y. Solubilities and diffusion coefficients of high boiling compounds in supercritical carbon dioxide. Chem Eng Sci. 2001;56:3027–44. https://doi.org/10.1016/S0009-2509(01)00003-3.

    Article  CAS  Google Scholar 

  30. Sajjad U, Sadeghianjahromi A, Ali HM, Wang C-C. Enhanced pool boiling of dielectric and highly wetting liquids – A review on surface engineering. Appl Therm Eng. 2021;195: 117074. https://doi.org/10.1016/j.applthermaleng.2021.117074.

    Article  Google Scholar 

  31. Ahangar Zonouzi S, Aminfar H, Mohammadpourfard M. A review on effects of magnetic fields and electric fields on boiling heat transfer and CHF. Appl Therm Eng. 2019;151:11–25. https://doi.org/10.1016/j.applthermaleng.2019.01.099.

    Article  CAS  Google Scholar 

  32. Haemmerich D, dos Santos I, Schutt DJ, Webster JG, Mahvi DM. In vitro measurements of temperature-dependent specific heat of liver tissue. Med Eng Phys. 2006;28:194–7. https://doi.org/10.1016/j.medengphy.2005.04.020.

    Article  PubMed  Google Scholar 

  33. Sun XZ, Li Q, Li WX, Wen ZX, Liu B. Enhanced pool boiling on microstructured surfaces with spatially-controlled mixed wettability. Int J Heat Mass Transf. 2022;183: 122164. https://doi.org/10.1016/j.ijheatmasstransfer.2021.122164.

    Article  Google Scholar 

  34. Moghadasi H, Saffari H. Experimental study of nucleate pool boiling heat transfer improvement utilizing micro/nanoparticles porous coating on copper surfaces. Int J Mech Sci. 2021;196: 106270. https://doi.org/10.1016/j.ijmecsci.2021.106270.

    Article  Google Scholar 

  35. Raki E, Afrand M, Abdollahi A. Influence of magnetic field on boiling heat transfer coefficient of a magnetic nanofluid consisting of cobalt oxide and deionized water in nucleate regime: An experimental study. Int J Heat Mass Transf. 2021;165: 120669. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120669.

    Article  CAS  Google Scholar 

  36. Chen CA, Li KW, Lin TF, Li W-K, Yan W-M. Experimental study on R-410A subcooled flow boiling heat transfer and bubble behavior inside horizontal annuli. Int Commun Heat Mass Transf. 2021;124: 105283. https://doi.org/10.1016/j.icheatmasstransfer.2021.105283.

    Article  CAS  Google Scholar 

  37. Li Z, Cheng J, Zhou X, Zeng X, Cao X, Fan G. Experimental study on sub-cooled flow boiling heat transfer characteristics in non-uniform heating tube bundle channel. Int J Heat Mass Transf. 2021;172: 121143. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121143.

    Article  Google Scholar 

  38. Das S, Johnsan R, Kumar S, Datta A. Experimental study of pool boiling heat transfer on an annealed TiO2 nanofilm heating surface. J Therm Anal Calorim. 2021;144:1073–82. https://doi.org/10.1007/s10973-020-09503-3.

    Article  CAS  Google Scholar 

  39. Chattopadhyay H, Samanta SK, Biswas G, Sharma BB. Direct numerical simulation of evaporation in a biporous media. J Mech Sci Technol. 2017;31:2635–41. https://doi.org/10.1007/s12206-017-0506-5.

    Article  Google Scholar 

  40. Kunkelmann C, Stephan P. CFD simulation of boiling flows using the volume-of-fluid method within OpenFOAM. Numer Heat Transf Part A Appl. 2009;56:631–46.

    Article  CAS  Google Scholar 

  41. Tan K, Hu Y, He Y. Effect of wettability on flow boiling heat transfer in a microtube. Case Stud Therm Eng. 2021;26: 101018. https://doi.org/10.1016/j.csite.2021.101018.

    Article  Google Scholar 

  42. Wang Z, Zheng X, Chryssostomidis C, Karniadakis GE. A phase-field method for boiling heat transfer. J Comput Phys. 2021;435: 110239. https://doi.org/10.1016/j.jcp.2021.110239.

    Article  CAS  Google Scholar 

  43. Alimoradi A, Veysi F. Prediction of heat transfer coefficients of shell and coiled tube heat exchangers using numerical method and experimental validation. Int J Therm Sci. 2016;107:196–208. https://doi.org/10.1016/j.ijthermalsci.2016.04.010.

    Article  Google Scholar 

  44. Shin S, Juric D. Modeling three-dimensional multiphase flow using a level contour reconstruction method for front tracking without connectivity. J Comput Phys. 2002;180:427–70. https://doi.org/10.1006/jcph.2002.7086.

    Article  CAS  Google Scholar 

  45. Esmaeeli A, Tryggvason G. Computations of explosive boiling in microgravity. J Sci Comput. 2003;19:163–82. https://doi.org/10.1023/A:1025347823928.

    Article  Google Scholar 

  46. Lin Y, Luo Y, Li W, Minkowycz WJ. Enhancement of flow boiling heat transfer in microchannel using micro-fin and micro-cavity surfaces. Int J Heat Mass Transf. 2021;179: 121739. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121739.

    Article  Google Scholar 

  47. Vontas K, Andredaki M, Georgoulas A, Miché N, Marengo M. The effect of surface wettability on flow boiling characteristics within microchannels. Int J Heat Mass Transf. 2021;172: 121133. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121133.

    Article  Google Scholar 

  48. Raut HS, Bhattacharya A, Sharma A. Dual grid level set method based direct numerical simulations of nucleate boiling with oscillating base plate. Int J Therm Sci. 2021;162: 106785. https://doi.org/10.1016/j.ijthermalsci.2020.106785.

    Article  Google Scholar 

  49. Guo K, Chang F, Li H. Application of a magnetic field in saturated film boiling of a magnetic nanofluid (MNF) under reduced gravity. Energies. 2021. https://doi.org/10.3390/en14030634.

    Article  Google Scholar 

  50. Badillo A. Quantitative phase-field modeling for boiling phenomena. Phys Rev E. 2012;86:41603. https://doi.org/10.1103/PhysRevE.86.041603.

    Article  CAS  Google Scholar 

  51. Sedaghatkish A, Sadeghiseraji J, Jamalabadi MYA. Numerical simulation of magnetic nanofluid (MNF) film boiling on cylindrical heated magnet using phase field method. Int J Heat Mass Transf. 2020;152: 119546. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119546.

    Article  CAS  Google Scholar 

  52. Hao L, Cheng P. Lattice Boltzmann simulations of liquid droplet dynamic behavior on a hydrophobic surface of a gas flow channel. J Power Sources. 2009;190:435–46. https://doi.org/10.1016/j.jpowsour.2009.01.029.

    Article  CAS  Google Scholar 

  53. Guo Q, Cheng P. 3D lattice Boltzmann investigation of nucleation sites and dropwise-to-filmwise transition in the presence of a non-condensable gas on a biomimetic surface. Int J Heat Mass Transf. 2019;128:185–98. https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.124.

    Article  CAS  Google Scholar 

  54. Huang H, Zheng H, Lu X, Shu C. An evaluation of a 3D free-energy-based lattice Boltzmann model for multiphase flows with large density ratio. Int J Numer Methods Fluids. 2010;63:1193–207. https://doi.org/10.1002/fld.2126.

    Article  CAS  Google Scholar 

  55. Fakhari A, Mitchell T, Leonardi C, Bolster D. Improved locality of the phase-field lattice-Boltzmann model for immiscible fluids at high density ratios. Phys Rev E. 2017;96:1–14. https://doi.org/10.1103/PhysRevE.96.053301.

    Article  Google Scholar 

  56. R. Samanta, H. Chattopadhyay CG. Study of corner solidification of pure metal using lattice Boltzmann method, In Proc 48th natl conf fluid mech fluid power December 27–29, 2021. BITS Pilani, Pilani Campus, RJ, India: Springer conf. proc.; 2021.

  57. Ajarostaghi SSM, Delavar MA, Poncet S. Thermal mixing, cooling and entropy generation in a micromixer with a porous zone by the lattice Boltzmann method. J Therm Anal Calorim. 2020;140:1321–39. https://doi.org/10.1007/s10973-019-08386-3.

    Article  CAS  Google Scholar 

  58. Da WY, Chung T, Armstrong RT, Mostaghimi P. ML-LBM: Predicting and Accelerating Steady State Flow Simulation in Porous Media with Convolutional Neural Networks. Transp Porous Media. 2021;138:49–75. https://doi.org/10.1007/s11242-021-01590-6.

    Article  Google Scholar 

  59. Huang J, Xiao F, Labra C, Sun J, Yin X. DEM-LBM simulation of stress-dependent absolute and relative permeabilities in porous media. Chem Eng Sci. 2021;239: 116633. https://doi.org/10.1016/j.ces.2021.116633.

    Article  CAS  Google Scholar 

  60. Ben Ltaifa K, D’Orazio A, Dhahri H. Numerical analysis of mixed convection heat transfer and laminar flow in a rectangular inclined micro-channel totally filled with Water/Al2O3 Nano fluid. J Therm Anal Calorim. 2021;144:2465–82. https://doi.org/10.1007/s10973-020-10466-8.

    Article  CAS  Google Scholar 

  61. Qi C, Tang J, Wang G. Natural convection of composite nanofluids based on a two-phase lattice Boltzmann model. J Therm Anal Calorim. 2020;141:277–87. https://doi.org/10.1007/s10973-020-09519-9.

    Article  CAS  Google Scholar 

  62. Alipour Lalami A, Hassanzadeh Afrouzi H, Moshfegh A. Investigation of MHD effect on nanofluid heat transfer in microchannels. J Therm Anal Calorim. 2019;136:1959–75. https://doi.org/10.1007/s10973-018-7851-1.

    Article  CAS  Google Scholar 

  63. Sheikholeslami M, Ellahi R. Three dimensional mesoscopic simulation of magnetic field effect on natural convection of nanofluid. Int J Heat Mass Transf. 2015;89:799–808. https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.110.

    Article  CAS  Google Scholar 

  64. Ibrahim M, Saeed T, Algehyne EA, Khan M, Chu Y-M. The effects of L-shaped heat source in a quarter-tube enclosure filled with MHD nanofluid on heat transfer and irreversibilities, using LBM: numerical data, optimization using neural network algorithm (ANN). J Therm Anal Calorim. 2021;144:2435–48. https://doi.org/10.1007/s10973-021-10594-9.

    Article  CAS  Google Scholar 

  65. Ravangard AR, Momayez L, Rashidi M. Effects of geometry on simulation of two-phase flow in microchannel with density and viscosity contrast. J Therm Anal Calorim. 2020;139:427–40. https://doi.org/10.1007/s10973-019-08342-1.

    Article  CAS  Google Scholar 

  66. Kamali Ahangar E, Izanlu M, Dolati Khakhian S, Mohamad AA, Bach Q-V. Modified lattice Boltzmann solution for non-isothermal rarefied gas flow through microchannel utilizing BSR and second-order implicit schemes. J Therm Anal Calorim. 2021;144:2525–41. https://doi.org/10.1007/s10973-020-10129-8.

    Article  CAS  Google Scholar 

  67. Sudhakar T, Das AK. Investigation of Bubble movement through sudden contraction in channel: a lattice based approach. Proc 24th Natl 2nd Int ISHMT-ASTFE Heat Mass Transf Conf. Begel House Inc.; 2017. https://doi.org/10.1615/IHMTC-2017.2980

  68. Sudhakar T, Das AK. Interface evolution of a liquid Taylor droplet during passage through a sudden contraction in a rectangular channel. Chem Eng Sci. 2018;192:993–1010. https://doi.org/10.1016/j.ces.2018.08.024.

    Article  CAS  Google Scholar 

  69. Chen D, Riaz A, Aute VC, Radermacher R. A solid–liquid model based on lattice Boltzmann method for phase change material melting with porous media in cylindrical heat exchangers. Appl Therm Eng. 2022;207: 118080. https://doi.org/10.1016/j.applthermaleng.2022.118080.

    Article  CAS  Google Scholar 

  70. Luo K, Pérez AT, Wu J, Yi H-L, Tan H-P. Efficient lattice Boltzmann method for electrohydrodynamic solid-liquid phase change. Phys Rev E. 2019;100:13306. https://doi.org/10.1103/PhysRevE.100.013306.

    Article  CAS  Google Scholar 

  71. Xu P, Xu S, Liu P, Gao Y, Liu X. Investigation of heat source location on solid-liquid phase change using lattice Boltzmann method. Energy Procedia. 2019;158:4389–95. https://doi.org/10.1016/j.egypro.2019.01.779.

    Article  Google Scholar 

  72. Shahriari A, Ashorynejad HR, Pop I. Entropy generation of MHD nanofluid inside an inclined wavy cavity by lattice Boltzmann method. J Therm Anal Calorim. 2019;135:283–303. https://doi.org/10.1007/s10973-018-7061-x.

    Article  CAS  Google Scholar 

  73. Ma Y, Mohebbi R, Rashidi MM, Yang Z. Mixed convection characteristics in a baffled U-shaped lid-driven cavity in the presence of magnetic field. J Therm Anal Calorim. 2020;140:1967–84. https://doi.org/10.1007/s10973-019-08900-7.

    Article  CAS  Google Scholar 

  74. Valizadeh Ardalan M, Alizadeh R, Fattahi A, Adelian Rasi N, Doranehgard MH, Karimi N. Analysis of unsteady mixed convection of Cu–water nanofluid in an oscillatory, lid-driven enclosure using lattice Boltzmann method. J Therm Anal Calorim. 2021;145:2045–61. https://doi.org/10.1007/s10973-020-09789-3.

    Article  CAS  Google Scholar 

  75. Samanta R, Chattopadhyay H, Guha C. A review on the application of lattice Boltzmann method for melting and solidification problems. Comput Mater Sci. 2022;206:111288. https://doi.org/10.1016/j.commatsci.2022.111288.

    Article  CAS  Google Scholar 

  76. Huang H, Sukop M, Lu X. Multiphase lattice Boltzmann methods: theory and application. New York: Wiley; 2015.

    Book  Google Scholar 

  77. Gunstensen AK, Rothman DH, Zaleski S, Zanetti G. Lattice Boltzmann model of immiscible fluids. Phys Rev A. 1991;43:4320–7. https://doi.org/10.1103/PhysRevA.43.4320.

    Article  CAS  PubMed  Google Scholar 

  78. Shan X, Chen H. Lattice Boltzmann model for simulating flows with multi phases and components. Phys Rev E. 1993;47(3):1815–9. https://doi.org/10.1103/PhysRevE.PhysRevE.1993;47:1815-9.

    Article  CAS  Google Scholar 

  79. Shan X, Chen H. Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation. Phys Rev E. 1994;49:2941. https://doi.org/10.1103/PhysRevE.49.2941.

    Article  CAS  Google Scholar 

  80. Swift MR, Osborn WR, Yeomans JM. Lattice Boltzmann Simulation of Nonideal Fluids. Phys Rev Lett. 1995;75:830.

    Article  CAS  PubMed  Google Scholar 

  81. Swift MR, Orlandini E, Osborn WR, Yeomans JM. Lattice Boltzmann simulations of liquid-gas and binary fluid systems. Phys Rev E - Stat Physics, Plasmas, Fluids, Relat Interdiscip Top. 1996;54:5041–52. https://doi.org/10.1103/PhysRevE.54.5041.

    Article  CAS  Google Scholar 

  82. He X, Chen S, Zhang R. A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability. J Comput Phys. 1999;152:642–63. https://doi.org/10.1006/jcph.1999.6257.

    Article  CAS  Google Scholar 

  83. Lee T, Lin CL. A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio. J Comput Phys. 2005;206:16–47. https://doi.org/10.1016/j.jcp.2004.12.001.

    Article  Google Scholar 

  84. He X, Doolen GD. Thermodynamic foundations of kinetic theory and lattice Boltzmann models for multiphase flows. J Stat Phys Springer. 2002;107:309–28. https://doi.org/10.1023/A:1014527108336.

    Article  Google Scholar 

  85. Shan X. Analysis and reduction of the spurious current in a class of multiphase lattice Boltzmann models. Phys Rev E - Stat Nonlinear, Soft Matter Phys. 2006;73:6–9. https://doi.org/10.1103/PhysRevE.73.047701.

    Article  CAS  Google Scholar 

  86. Sbragaglia M, Benzi R, Biferale L, Succi S, Sugiyama K, Toschi F. Generalized lattice Boltzmann method with multirange pseudopotential. Phys Rev E - Stat Nonlinear, Soft Matter Phys. 2007;75:1–13. https://doi.org/10.1103/PhysRevE.75.026702.

    Article  CAS  Google Scholar 

  87. Sbragaglia M, Chen H, Shan X, Succi S. Continuum free-energy formulation for a class of lattice Boltzmann multiphase models. EPL. 2009;86:0–6. https://doi.org/10.1209/0295-5075/86/24005.

    Article  CAS  Google Scholar 

  88. Yuan P, Schaefer L. Equations of state in a lattice Boltzmann model. Phys Fluids. 2006. https://doi.org/10.1063/1.2187070.

    Article  Google Scholar 

  89. Kupershtokh AL, Medvedev DA, Karpov DI. On equations of state in a lattice Boltzmann method. Comput Math with Appl. 2009;58:965–74. https://doi.org/10.1016/j.camwa.2009.02.024.

    Article  Google Scholar 

  90. Falcucci G, Ubertini S, Succi S. Lattice Boltzmann simulations of phase-separating flows at large density ratios: The case of doubly-attractive pseudo-potentials. Soft Matter. 2010;6:4357–65. https://doi.org/10.1039/C002974B.

    Article  CAS  Google Scholar 

  91. Gong S, Cheng P. A lattice Boltzmann method for simulation of liquid-vapor phase-change heat transfer. Int J Heat Mass Transf. 2012;55:4923–7. https://doi.org/10.1016/j.ijheatmasstransfer.2012.04.037.

    Article  CAS  Google Scholar 

  92. Li Q, Kang QJ, Francois MM, He YL, Luo KH. Lattice Boltzmann modeling of boiling heat transfer: The boiling curve and the effects of wettability. Int J Heat Mass Transf. 2015;85:787–96. https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.136.

    Article  Google Scholar 

  93. Hazi G, Markus A. On the bubble departure diameter and release frequency based on numerical simulation results. Int J Heat Mass Transf. 2009;52:1472–80. https://doi.org/10.1016/j.ijheatmasstransfer.2008.09.003.

    Article  CAS  Google Scholar 

  94. Ryu S, Ko S. Direct numerical simulation of nucleate pool boiling using a two-dimensional lattice Boltzmann method. Nucl Eng Des. 2012;248:248–62. https://doi.org/10.1016/j.nucengdes.2012.03.031.

    Article  CAS  Google Scholar 

  95. Sadeghi R, Shadloo MS, Jamalabadi MYA, Karimipour A. A three-dimensional lattice Boltzmann model for numerical investigation of bubble growth in pool boiling. Int Commun Heat Mass Transf. 2016;79:58–66. https://doi.org/10.1016/j.icheatmasstransfer.2016.10.009.

    Article  Google Scholar 

  96. Sadeghi R, Shadloo MS. Three-dimensional numerical investigation of film boiling by the lattice Boltzmann method. Numer Heat Transf Part A Appl. 2017;71:560–74. https://doi.org/10.1080/10407782.2016.1277936.

    Article  CAS  Google Scholar 

  97. Zhou P, Liu Z, Liu W, Duan X. LBM simulates the effect of sole nucleate site geometry on pool boiling. Appl Therm Eng. 2019;160:114027. https://doi.org/10.1016/j.applthermaleng.2019.114027.

    Article  Google Scholar 

  98. Zhang L, Wang T, Kim S, Jiang Y. The effects of wall superheat and surface wettability on nucleation site interactions during boiling. Int J Heat Mass Transf. 2020;146:118820. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118820.

    Article  Google Scholar 

  99. Yuan DW, Pan LM, Chen D, Zhang H, Wei JH, Huang YP. Bubble behavior of high subcooling flow boiling at different system pressure in vertical narrow channel. Appl Therm Eng. 2011;31:3512–20. https://doi.org/10.1016/j.applthermaleng.2011.07.004.

    Article  Google Scholar 

  100. Sun T, Li W, Yang S. Numerical simulation of bubble growth and departure during flow boiling period by lattice Boltzmann method. Int J Heat Fluid Flow. 2013;44:120–9. https://doi.org/10.1016/j.ijheatfluidflow.2013.05.003.

    Article  Google Scholar 

  101. Gong S, Cheng P. Numerical investigation of saturated flow boiling in microchannels by the lattice boltzmann method. Numer Heat Transf Part A Appl. 2014;65:644–61. https://doi.org/10.1080/10407782.2013.836025.

    Article  CAS  Google Scholar 

  102. Sun T, Gui N, Yang X, Tu J, Jiang S. Numerical study of patterns and influencing factors on flow boiling in vertical tubes by thermal LBM simulation. Int Commun Heat Mass Transf Elsevier. 2017;86:32–41. https://doi.org/10.1016/j.icheatmasstransfer.2017.05.014.

    Article  Google Scholar 

  103. Dong Z, Li W, Song Y. A numerical investigation of bubble growth on and departure from a superheated wall by lattice Boltzmann method. Int J Heat Mass Transf. 2010;53:4908–16. https://doi.org/10.1016/j.ijheatmasstransfer.2010.06.001.

    Article  Google Scholar 

  104. Lin Y, Luo Y, Li J, Li W. Heat transfer, pressure drop and flow patterns of flow boiling on heterogeneous wetting surface in a vertical narrow microchannel. Int J Heat Mass Transf. 2021;172:121158. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121158.

    Article  CAS  Google Scholar 

  105. Qin J, Xu ZG, Liu ZY, Lu F, Zhao CY. Pore-scale investigation on flow boiling heat transfer mechanisms in open-cell metal foam by LBM. Int Commun Heat Mass Transf. 2020. https://doi.org/10.1016/j.icheatmasstransfer.2019.104418.

    Article  Google Scholar 

  106. Qin J, Xu Z, Ma X. Pore-scale simulation on pool boiling heat transfer and bubble dynamics in open-cell metal foam by lattice boltzmann method. J Heat Transf. 2021;143:1–15. https://doi.org/10.1115/1.4048734.

    Article  CAS  Google Scholar 

  107. Chen L, Kang Q, Mu Y, He YL, Tao WQ. A critical review of the pseudopotential multiphase lattice Boltzmann model: methods and applications. Int J Heat Mass Transf. 2014;76:210–36. https://doi.org/10.1016/j.ijheatmasstransfer.2014.04.032.

    Article  CAS  Google Scholar 

  108. Sudhakar T, Das AK. Evolution of multiphase Lattice Boltzmann method: a review. J Inst Eng Ser C. 2020;101:711–9. https://doi.org/10.1007/s40032-020-00600-8.

    Article  Google Scholar 

  109. Petersen KJ, Brinkerhoff JR. On the lattice Boltzmann method and its application to turbulent, multiphase flows of various fluids including cryogens: a review. Phys Fluids DOI. 2021;10(1063/5):0046938.

    Google Scholar 

  110. Sahu A, Bhowmick S. Applications of Lattice Boltzmann in method in multi-component and multi-phase flow: A review. AIP Conf Proc. 2020. https://doi.org/10.1063/5.0024322.

    Article  Google Scholar 

  111. Sukop MC, Thorne DT. Lattice Boltzmann Modeling; 2006

  112. Succi S. The lattice Boltzmann equation: for fluid dynamics and beyond. Oxford: Oxford University Press; 2001.

    Google Scholar 

  113. Guo Z, Shu C. Lattice Boltzmann method and its application in engineering. Singapore: World Scientific; 2013.

    Book  Google Scholar 

  114. Kruger T, Kusumaatmaja H, Kuzmin A, Shardt O, Goncalo S, Viggen EM. The lattice boltzmann method, principles and practice. Springer Int: Publ; 2017.

    Book  Google Scholar 

  115. Mohamad AA. Lattice boltzmann method. Berlin: Springer; 2011.

    Book  Google Scholar 

  116. Chen S, Doolen GD. Lattice Boltzmann method for fluid flows. Annu Rev Fluid Mech. 1998;30:329–64.

    Article  Google Scholar 

  117. He X, Shan X, Doolen GD. Discrete Boltzmann equation model for nonideal gases. Phys Rev E - Stat Phys Plasmas, Fluids, Relat Interdiscip Top. 1998;57:R13–6. https://doi.org/10.1103/PhysRevE.57.R13.

    Article  CAS  Google Scholar 

  118. Guo Z, Zheng C, Shi B. Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys Rev E - Stat Phys Plasmas, Fluids, Relat Interdiscip Top. 2002;65:6. https://doi.org/10.1103/PhysRevE.65.046308.

    Article  CAS  Google Scholar 

  119. Wagner AJ. Thermodynamic consistency of liquid-gas lattice Boltzmann simulations. Phys Rev E. 2006;74:56703. https://doi.org/10.1103/PhysRevE.74.056703.

    Article  CAS  Google Scholar 

  120. Kupershtokh AL, Medvedev DA. Lattice Boltzmann equation method in electrohydrodynamic problems. J Electrostat. 2006;64:581–5. https://doi.org/10.1016/j.elstat.2005.10.012.

    Article  Google Scholar 

  121. Li Q, Luo KH, Kang QJ, He YL, Chen Q, Liu Q. Lattice Boltzmann methods for multiphase flow and phase-change heat transfer. Prog Energy Combust Sci. 2016;52:62–105. https://doi.org/10.1016/j.pecs.2015.10.001.

    Article  CAS  Google Scholar 

  122. Baakeem SS, Bawazeer SA, Mohamad A. A novel approach of unit conversion in the lattice Boltzmann method. Appl Sci. 2021;11:6386. https://doi.org/10.3390/app11146386.

    Article  CAS  Google Scholar 

  123. Lallemand P, Luo LS. Theory of the lattice Boltzmann method: dispersion, isotropy, Galilean invariance, and stability. Phys Rev E. 2000;61:6546–62. https://doi.org/10.1103/PhysRevE.61.6546.

    Article  CAS  Google Scholar 

  124. Li Q, Luo KH, Li XJ. Lattice Boltzmann modeling of multiphase flows at large density ratio with an improved pseudopotential model. Phys Rev E - Stat Nonlinear, Soft Matter Phys. 2013. https://doi.org/10.1103/PhysRevE.87.053301.

    Article  Google Scholar 

  125. Gong W, Yan YY, Chen S, Wright E. A modified phase change pseudopotential lattice Boltzmann model. Int J Heat Mass Transf. 2018;125:323–9. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.090.

    Article  CAS  Google Scholar 

  126. Xie S, Tong Q, Guo Y, Li X, Kong H, Zhao J. The effects of surface orientation, heater size, wettability, and subcooling on the critical heat flux enhancement in pool boiling. Int J Heat Mass Transf. 2020. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119230.

    Article  Google Scholar 

  127. Ginzburg I. Multiple-Relaxation-Time Lattice Boltzmann Models in 3D Multiple-relaxation-time lattice Boltzmann. R Sciety. 2002;

  128. Yu Z, Fan LS. Multirelaxation-time interaction-potential-based lattice Boltzmann model for two-phase flow. Phys Rev E - Stat Nonlinear, Soft Matter Phys. 2010;82:1–14. https://doi.org/10.1103/PhysRevE.82.046708.

    Article  CAS  Google Scholar 

  129. Lycett-Brown D, Luo KH. Multiphase cascaded lattice Boltzmann method. Comput Math. 2014;67:350–62. https://doi.org/10.1016/j.camwa.2013.08.033.

    Article  Google Scholar 

  130. Ginzburg I, d’Humières D, Kuzmin A. Optimal stability of advection-diffusion lattice boltzmann models with two relaxation times for positive/negative equilibrium. J Stat Phys. 2010;139:1090–143. https://doi.org/10.1007/s10955-010-9969-9.

    Article  CAS  Google Scholar 

  131. Kuzmin A, Ginzburg I, Mohamad AA. The role of the kinetic parameter in the stability of two-relaxation-time advection-diffusion lattice Boltzmann schemes. Comput Math with Appl. 2011;61:3417–42. https://doi.org/10.1016/j.camwa.2010.07.036.

    Article  Google Scholar 

  132. Hassine SBH, Dymitrowska M, Pot V, Genty A. Gas migration in highly water-saturated opalinus clay microfractures using a two-phase TRT LBM. Transp Porous Media. 2017;116:975–1003. https://doi.org/10.1007/s11242-016-0809-5.

    Article  CAS  Google Scholar 

  133. Grunau D, Chen S, Eggert K. A lattice Boltzmann model for multiphase fluid flows. Phys Fluids A. 1992;5:2557–62. https://doi.org/10.1063/1.858769.

    Article  Google Scholar 

  134. Huang H, Huang JJ, Lu XY, Sukop MC. On simulations of high-density ratio flows using color-gradient multiphase lattice boltzmann models. Int J Mod Phys C. 2013;24:1–19. https://doi.org/10.1142/S0129183113500216.

    Article  CAS  Google Scholar 

  135. Wen ZX, Li Q, Yu Y, Luo KH. Improved three-dimensional color-gradient lattice Boltzmann model for immiscible two-phase flows. Phys Rev E. 2019. https://doi.org/10.1103/PhysRevE.100.023301.

    Article  PubMed  Google Scholar 

  136. Gong S, Cheng P. Direct numerical simulations of pool boiling curves including heater’s thermal responses and the effect of vapor phase’s thermal conductivity. Int Commun Heat Mass Transf. 2017;87:61–71. https://doi.org/10.1016/j.icheatmasstransfer.2017.06.023.

    Article  Google Scholar 

  137. Kang Q, Zhang D, Chen S. Displacement of a two-dimensional immiscible droplet in a channel. Phys fluids. 2002;14:3203–14. https://doi.org/10.1063/1.1499125.

    Article  CAS  Google Scholar 

  138. Zhang R, Chen H. Lattice Boltzmann method for simulations of liquid-vapor thermal flows. Phys Rev E - Stat Phys, Plasmas, Fluids, Relat Interdiscip Top. 2003;67:6. https://doi.org/10.1103/PhysRevE.67.066711.

    Article  CAS  Google Scholar 

  139. Zeng JB, Li LJ, Liao Q, Cui WZ, Chen QH, Pan LM. Simulation of phase transition process using lattice Boltzmann method. Chinese Sci Bull. 2009;54:4596–603. https://doi.org/10.1007/s11434-009-0734-x.

    Article  CAS  Google Scholar 

  140. Zhang J, Tian F. A bottom-up approach to non-ideal fluids in the lattice Boltzmann method. Europhysics Lett. 2008;81:66005. https://doi.org/10.1209/0295-5075/81/66005.

    Article  CAS  Google Scholar 

  141. Mondal K, Bhattacharya A. Bubble dynamics and enhancement of pool boiling in presence of an idealized porous medium: a numerical study using lattice Boltzmann method. J Therm Sci Eng Appl. 2022;14:81004. https://doi.org/10.1115/1.4053054.

    Article  CAS  Google Scholar 

  142. Takada N, Misawa M, Tomiyama A, Fujiwara S. Numerical simulation of two- and three-dimensional two-phase fluid motion by lattice Boltzmann method. Comput Phys Commun. 2000;129:233–46. https://doi.org/10.1016/S0010-4655(00)00110-7.

    Article  CAS  Google Scholar 

  143. Inamuro T, Ogata T, Ogino F. Numerical simulation of bubble flows by the lattice Boltzmann method. Futur Gener Comput Syst. 2004;20:959–64. https://doi.org/10.1016/j.future.2003.12.008.

    Article  Google Scholar 

  144. Wöhrwag M, Semprebon C, Mazloomi Moqaddam A, Karlin I, Kusumaatmaja H. Ternary free-energy entropic lattice boltzmann model with a high density ratio. Phys Rev Lett. 2018;120:234501. https://doi.org/10.1103/PhysRevLett.120.234501.

    Article  PubMed  Google Scholar 

  145. Zheng HW, Shu C, Chew YT. A lattice Boltzmann model for multiphase flows with large density ratio. J Comput Phys. 2006;218:353–71. https://doi.org/10.1016/j.jcp.2006.02.015.

    Article  CAS  Google Scholar 

  146. Chiu PH, Lin YT. A conservative phase field method for solving incompressible two-phase flows. J Comput Phys. 2011;230:185–204. https://doi.org/10.1016/j.jcp.2010.09.021.

    Article  CAS  Google Scholar 

  147. Zu YQ, He S. Phase-field-based lattice Boltzmann model for incompressible binary fluid systems with density and viscosity contrasts. Phys Rev E - Stat Nonlinear, Soft Matter Phys. 2013;87:1–23. https://doi.org/10.1103/PhysRevE.87.043301.

    Article  CAS  Google Scholar 

  148. Safari H, Rahimian MH, Krafczyk M. Consistent simulation of droplet evaporation based on the phase-field multiphase lattice Boltzmann method. Phys Rev E - Stat Nonlinear, Soft Matter Phys. 2014;90:1–13. https://doi.org/10.1103/PhysRevE.90.033305.

    Article  CAS  Google Scholar 

  149. Mitchell T, Leonardi C, Fakhari A. Development of a three-dimensional phase-field lattice Boltzmann method for the study of immiscible fluids at high density ratios. Int J Multiph Flow. 2018;107:1–15. https://doi.org/10.1016/j.ijmultiphaseflow.2018.05.004.

    Article  CAS  Google Scholar 

  150. Haghani-Hassan-Abadi R, Fakhari A, Rahimian MH. Phase-change modeling based on a novel conservative phase-field method. J Comput Phys. 2021;432. https://doi.org/10.1016/j.jcp.2021.110111.

    Article  CAS  Google Scholar 

  151. Ebadi A, Hosseinalipour SM. The collision of immiscible droplets in three-phase liquid systems: A numerical study using phase-field lattice Boltzmann method. Chem Eng Res Des. 2022;178:289–314. https://doi.org/10.1016/j.cherd.2021.12.019.

    Article  CAS  Google Scholar 

  152. Mohammadi-Shad M, Lee T. Phase-field lattice Boltzmann modeling of boiling using a sharp-interface energy solver. Phys Rev E. 2017;96:13306. https://doi.org/10.1103/PhysRevE.96.013306.

    Article  Google Scholar 

  153. Gong S, Cheng P. Numerical investigation of droplet motion and coalescence by an improved lattice Boltzmann model for phase transitions and multiphase flows. Comput Fluids. 2012;53:93–104. https://doi.org/10.1016/j.compfluid.2011.09.013.

    Article  Google Scholar 

  154. Baakeem SS, Bawazeer SA, Mohamad AA. Comparison and evaluation of Shan-Chen model and most commonly used equations of state in multiphase lattice Boltzmann method. Int J Multiph Flow. 2020;128:1–15. https://doi.org/10.1016/j.ijmultiphaseflow.2020.103290.

    Article  CAS  Google Scholar 

  155. Liu H, Valocchi AJ, Zhang Y, Kang Q. Phase-field-based lattice Boltzmann finite-difference model for simulating thermocapillary flows. Phys Rev E - Stat Nonlinear, Soft Matter Phys. 2013;87:1–13. https://doi.org/10.1103/PhysRevE.87.013010.

    Article  CAS  Google Scholar 

  156. Feng Y, Li H, Zhao J, Guo K, Lei X. Lattice Boltzmann study on influence of gravitational acceleration on pool nucleate boiling heat transfer. Microgravity Sci Technol. 2021. https://doi.org/10.1007/s12217-020-09864-2.

    Article  Google Scholar 

  157. Ahmad S, Chen J, Eze C, Zhao J. Lattice Boltzmann study of nucleation site interaction and nucleate boiling heat transfer on a hybrid surface with multiple cavity-pillar structures. Int J Therm Sci. 2021;163:106860. https://doi.org/10.1016/j.ijthermalsci.2021.106860.

    Article  Google Scholar 

  158. He Y-L, Liu Q, Li Q, Tao W-Q. Lattice Boltzmann methods for single-phase and solid-liquid phase-change heat transfer in porous media: A review. Int J Heat Mass Transf. 2019;129:160–97. https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.135.

    Article  Google Scholar 

  159. Samanta R, Chattopadhyay H, Guha C. Transport phenomena in a differentially heated lid-driven cavity: a study using multi-relaxation-time thermal lattice Boltzmann modeling. Phys Fluids. 2020. https://doi.org/10.1063/5.0021105.

    Article  Google Scholar 

  160. Li Q, Yu Y, Wen ZX. How does boiling occur in lattice Boltzmann simulations? Phys Fluids. 2020. https://doi.org/10.1063/5.0015491.

    Article  Google Scholar 

  161. Da YJ, Luo K, Wu J, Yi HL. Electrohydrodynamic effects on bubble dynamics during nucleate pool boiling under the leaky dielectric assumption. Phys Fluids. 2022. https://doi.org/10.1063/5.0077313.

    Article  Google Scholar 

  162. Nie D, Guan G. Study on boiling heat transfer in a shear flow through the lattice Boltzmann method. Phys Fluids. 2021. https://doi.org/10.1063/5.0047580.

    Article  Google Scholar 

  163. Mondal K, Bhattacharya A. Pool boiling enhancement through induced vibrations in the liquid pool due to moving solid bodies—A numerical study using lattice Boltzmann method (LBM). Phys Fluids. 2021;33:093310. https://doi.org/10.1063/5.0057637.

    Article  CAS  Google Scholar 

  164. Osher S, Sethian JA. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J Comput Phys. 1988;79:12–49.

    Article  Google Scholar 

  165. Dhir VK. Numerical simulations of pool-boiling heat transfer. AIChE J. 2001;47:813–34. https://doi.org/10.1002/aic.690470407.

    Article  CAS  Google Scholar 

  166. Hirt CW, Nichols BD. Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys Elsevier. 1981;39:201–25. https://doi.org/10.1016/0021-9991(81)90145-5.

    Article  Google Scholar 

  167. Unverdi SO, Tryggvason G. A front-tracking method for viscous, incompressible, multi-fluid flows. J Comput Phys. 1992;100:25–37. https://doi.org/10.1016/0021-9991(92)90307-K.

    Article  Google Scholar 

  168. Gong S, Cheng P. Lattice Boltzmann simulation of periodic bubble nucleation, growth and departure from a heated surface in pool boiling. Int J Heat Mass Transf. 2013;64:122–32. https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.058.

    Article  Google Scholar 

  169. Martys NS, Chen H. Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method. Phys Rev E - Stat Physics, Plasmas, Fluids, Relat Interdiscip Top. 1996;53:743–50. https://doi.org/10.1103/PhysRevE.53.743.

    Article  CAS  Google Scholar 

  170. Raiskinmäki P, Shakib-Manesh A, Koponen A, Jäsberg A, Kataja M, Timonen J. Simulations of non-spherical particles suspended in a shear flow. Comput Phys Commun. 2000;129:185–95. https://doi.org/10.1016/S0010-4655(00)00106-5.

    Article  Google Scholar 

  171. Raiskinmäki P, Koponen A, Merikoski J, Timonen J. Spreading dynamics of three-dimensional droplets by the lattice-Boltzmann method. Comput Mater Sci. 2000;18:7–12. https://doi.org/10.1016/S0927-0256(99)00095-6.

    Article  Google Scholar 

  172. Huang H, Thorne DT, Schaap MG, Sukop MC. Proposed approximation for contact angles in Shan-and-Chen-type multicomponent multiphase lattice Boltzmann models. Phys Rev E - Stat Nonlinear, Soft Matter Phys. 2007;76:1–6. https://doi.org/10.1103/PhysRevE.76.066701.

    Article  CAS  Google Scholar 

  173. Kang Q, Zhang D, Chen S. Displacement of a three-dimensional immiscible droplet in a duct. J Fluid Mech. 2005;545:41–66. https://doi.org/10.1017/S0022112005006956.

    Article  Google Scholar 

  174. Benzi R, Biferale L, Sbragaglia M, Succi S, Toschi F. Mesoscopic modeling of a two-phase flow in the presence of boundaries: the contact angle. Phys Rev E - Stat Nonlinear, Soft Matter Phys. 2006;74:1–14. https://doi.org/10.1103/PhysRevE.74.021509.

    Article  CAS  Google Scholar 

  175. Li Q, Luo KH, Kang QJ, Chen Q. Contact angles in the pseudopotential lattice Boltzmann modeling of wetting. Phys Rev E - Stat Nonlinear, Soft Matter Phys. 2014;90:1–9. https://doi.org/10.1103/PhysRevE.90.053301.

    Article  CAS  Google Scholar 

  176. Qin RS. Bubble formation in lattice Boltzmann immiscible shear flow114506. J Chem Phys DOI. 2007;10(1063/1):2711433.

    Google Scholar 

  177. Zhang D, Li S, Ren W, Li Y, Mei N. Co-existing boiling and condensation phase changes of a multicomponent fluid in a confined micro-space analysed by a modified LBM. Int J Therm Sci. 2021;170:107147. https://doi.org/10.1016/j.ijthermalsci.2021.107147.

    Article  Google Scholar 

  178. Gupta A, Kumar R. Effect of geometry on droplet formation in the squeezing regime in a microfluidic T-junction. Microfluid Nanofluidics. 2010;8:799–812. https://doi.org/10.1007/s10404-009-0513-7.

    Article  Google Scholar 

  179. Xie C, Zhang J, Bertola V, Wang M. Droplet evaporation on a horizontal substrate under gravity field by mesoscopic modeling. J Colloid Interface Sci. 2016;463:317–23. https://doi.org/10.1016/j.jcis.2015.10.054.

    Article  CAS  PubMed  Google Scholar 

  180. Safari H, Rahimian MH, Krafczyk M. Extended lattice Boltzmann method for numerical simulation of thermal phase change in two-phase fluid flow. Phys Rev E - Stat Nonlinear, Soft Matter Phys. 2013;88:1–12. https://doi.org/10.1103/PhysRevE.88.013304.

    Article  CAS  Google Scholar 

  181. Sugimoto M, Sawada Y, Kaneda M, Suga K. Consistent evaporation formulation for the phase-field lattice Boltzmann method. Phys Rev E Am Phys Soc. 2021;103:1–11. https://doi.org/10.1103/PhysRevE.103.053307.

    Article  Google Scholar 

  182. Sun T, Sun J, Ang X, Li S, Su X. A three-dimensional numerical study on dynamics behavior of a rising vapor bubble in uniformly superheated liquid by lattice Boltzmann method. Int J Heat Fluid Flow Elsevier. 2016;62:362–74. https://doi.org/10.1016/j.ijheatfluidflow.2016.09.012.

    Article  Google Scholar 

  183. Zhao W, Liang J, Sun M, Cai X, Li P. Hybrid phase-change lattice Boltzmann simulation of the bubble nucleation and different boiling regimes of conjugate boiling heat transfer. arXiv preprint arXiv:1911.10747;2019;1–32. https://doi.org/10.48550/arXiv.1911.10747

  184. Yu Y, Wen ZX, Li Q, Zhou P, Yan HJ. Boiling heat transfer on hydrophilic-hydrophobic mixed surfaces: A 3D lattice Boltzmann study. Appl Therm Eng Elsevier. 2018;142:846–54. https://doi.org/10.1016/j.applthermaleng.2018.07.059.

    Article  CAS  Google Scholar 

  185. Dou S, Hao L, Liu H. Numerical study of bubble behaviors and heat transfer in pool boiling of water/NaCl solutions using the lattice Boltzmann method. Int J Therm Sci. 2021;170:107158. https://doi.org/10.1016/j.ijthermalsci.2021.107158.

    Article  CAS  Google Scholar 

  186. Huang Y, Tian Y, Ye W, Li W, Lei J, Zhang Y. Enhancing Pool Boiling Heat Transfer by Structured Surfaces–A Lattice Boltzmann Study. J Appl Fluid Mech. 2022;15:139–51.

    Google Scholar 

  187. Jaramillo A, Mapelli VP, Cabezas-Gómez L. Pseudopotential Lattice Boltzmann Method for boiling heat transfer: a mesh refinement procedure. Appl Therm Eng. 2022. https://doi.org/10.1016/j.applthermaleng.2022.118705.

    Article  Google Scholar 

  188. Geier M, Greiner A, Korvink JG. Cascaded digital lattice Boltzmann automata for high Reynolds number flow. Phys Rev E. 2006;73:66705. https://doi.org/10.1103/PhysRevE.73.066705.

    Article  CAS  Google Scholar 

  189. Lycett-Brown D, Luo KH. Improved forcing scheme in pseudopotential lattice Boltzmann methods for multiphase flow at arbitrarily high density ratios. Phys Rev E. 2015;91:23305. https://doi.org/10.1103/PhysRevE.91.023305.

    Article  CAS  Google Scholar 

  190. Lycett-Brown D, Luo KH. Cascaded lattice Boltzmann method with improved forcing scheme for large-density-ratio multiphase flow at high Reynolds and Weber numbers. Phys Rev E. 2016;94:53313. https://doi.org/10.1103/PhysRevE.94.053313.

    Article  Google Scholar 

  191. Saito S, De Rosis A, Festuccia A, Kaneko A, Abe Y, Koyama K. Color-gradient lattice Boltzmann model with nonorthogonal central moments: Hydrodynamic melt-jet breakup simulations. Phys Rev E. 2018;98:13305. https://doi.org/10.1103/PhysRevE.98.013305.

    Article  CAS  Google Scholar 

  192. Lycett-Brown D, Luo KH. Multiphase cascaded lattice Boltzmann method. Comput Math with Appl. 2014;67:350–62. https://doi.org/10.1016/j.camwa.2013.08.033.

    Article  Google Scholar 

  193. Fei L, Luo KH, Lin C, Li Q. Modeling incompressible thermal flows using a central-moments-based lattice Boltzmann method. Int J Heat Mass Transf. 2018;120:624–34. https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.052.

    Article  Google Scholar 

  194. Fei L, Luo KH. Cascaded lattice Boltzmann method for incompressible thermal flows with heat sources and general thermal boundary conditions. Comput Fluids. 2018;165:89–95. https://doi.org/10.1016/j.compfluid.2018.01.020.

    Article  Google Scholar 

  195. Fei L, Yang J, Chen Y, Mo H, Luo KH. Mesoscopic simulation of three-dimensional pool boiling based on a phase-change cascaded lattice Boltzmann method. Phys Fluids DOI. 2020;10(1063/5):0023639.

    Google Scholar 

  196. Fei L, Qin F, Wang G, Luo KH, Derome D, Carmeliet J. Droplet evaporation in finite-size systems: theoretical analysis and mesoscopic modeling. Phys Rev E. APS; 2022; 105:25101. https://doi.org/10.1103/PhysRevE.105.025101

  197. Saito S, De Rosis A, Fei L, Luo KH, Ebihara KI, Kaneko A, Abe Y. Lattice Boltzmann modeling and simulation of forced-convection boiling on a cylinder. Phys Fluids DOI. 2021;10(1063/5):0032743.

    Google Scholar 

  198. Mukherjee A, Basu DN, Mondal PK. Algorithmic augmentation in the pseudopotential-based lattice Boltzmann method for simulating the pool boiling phenomenon with high-density ratio. Phys Rev E APS. 2021;103:53302. https://doi.org/10.1103/PhysRevE.103.053302.

    Article  CAS  Google Scholar 

  199. Hsieh D-Y, Wang X-P. Phase transition in van der Waals fluid. SIAM J Appl Math SIAM. 1997;57:871–92. https://doi.org/10.1137/S0036139995295165.

    Article  Google Scholar 

  200. Zhang L, Xu J, Lei J, Liu G. The connection between wall wettability, boiling regime and symmetry breaking for nanoscale boiling. Int J Therm Sci. 2019;145:106033. https://doi.org/10.1016/j.ijthermalsci.2019.106033.

    Article  CAS  Google Scholar 

  201. She X, Shedd TA, Lindeman B, Yin Y, Zhang X. Bubble formation on solid surface with a cavity based on molecular dynamics simulation. Int J Heat Mass Transf. 2016;95:278–87. https://doi.org/10.1016/j.ijheatmasstransfer.2015.11.082.

    Article  CAS  Google Scholar 

  202. Nemati M, Abady ARSN, Toghraie D, Karimipour A. Numerical investigation of the pseudopotential lattice Boltzmann modeling of liquid–vapor for multi-phase flows. Phys A Stat Mech Appl. 2018;489:65–77. https://doi.org/10.1016/j.physa.2017.07.013.

    Article  CAS  Google Scholar 

  203. Huang H, Krafczyk M, Lu X. Forcing term in single-phase and Shan-Chen-type multiphase lattice Boltzmann models. Phys Rev E APS. 2011;84:46710. https://doi.org/10.1103/PhysRevE.84.046710.

    Article  CAS  Google Scholar 

  204. Li Q, Luo KH, Li XJ. Forcing scheme in pseudopotential lattice Boltzmann model for multiphase flows. Phys Rev E - Stat Nonlinear, Soft Matter Phys. 2012;86:1–9. https://doi.org/10.1103/PhysRevE.86.016709.

    Article  CAS  Google Scholar 

  205. Sun K, Wang T, Jia M, Xiao G. Evaluation of force implementation in pseudopotential-based multiphase lattice Boltzmann models. Phys A Stat Mech its Appl. 2012;391:3895–907. https://doi.org/10.1016/j.physa.2012.03.008.

    Article  Google Scholar 

  206. Mondal K, Bhattacharya A. Numerical study of pool boiling heat transfer from surface with protrusions using lattice Boltzmann method. J Heat Transf. 2021;10(1115/1):4049031.

    Google Scholar 

  207. Sun T, Li W, Dong B. Numerical simulation of vapor bubble growth on a vertical superheated wall using lattice Boltzmann method. Int J Numer Methods Heat Fluid Flow. 2015;25:1214–30. https://doi.org/10.1108/HFF-08-2013-0263.

    Article  Google Scholar 

  208. Begmohammadi A, Farhadzadeh M, Rahimian MH. Simulation of pool boiling and periodic bubble release at high density ratio using lattice Boltzmann method. Int Commun Heat Mass Transf. 2015;61:78–87. https://doi.org/10.1016/j.icheatmasstransfer.2014.12.018.

    Article  Google Scholar 

  209. Yuan J, Ye X, Shan Y. Modeling of the bubble dynamics and heat flux variations during lateral coalescence of bubbles in nucleate pool boiling. Int J Multiph Flow. 2021;142. https://doi.org/10.1016/j.ijmultiphaseflow.2021.103701.

    Article  CAS  Google Scholar 

  210. Zhang C, Hong F, Cheng P. Simulation of liquid thin film evaporation and boiling on a heated hydrophilic microstructured surface by Lattice Boltzmann method. Int J Heat Mass Transf. 2015;86:629–38. https://doi.org/10.1016/j.ijheatmasstransfer.2015.03.029.

    Article  CAS  Google Scholar 

  211. Zhang C, Cheng P, Hong F. Mesoscale simulation of heater size and subcooling effects on pool boiling under controlled wall heat flux conditions. Int J Heat Mass Transf. 2016;101:1331–42. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.036.

    Article  CAS  Google Scholar 

  212. Fang WZ, Chen L, Kang QJ, Tao WQ. Lattice Boltzmann modeling of pool boiling with large liquid-gas density ratio. Int J Therm Sci. 2017;114:172–83. https://doi.org/10.1016/j.ijthermalsci.2016.12.017.

    Article  CAS  Google Scholar 

  213. Gong S, Cheng P, Quan X. Two-dimensional mesoscale simulations of saturated pool boiling from rough surfaces. Part I: Bubble nucleation in a single cavity at low superheats. Int J Heat Mass Transf. 2016;100:927–37. https://doi.org/10.1016/j.ijheatmasstransfer.2016.04.085.

    Article  Google Scholar 

  214. Gong S, Cheng P. Two-dimensional mesoscale simulations of saturated pool boiling from rough surfaces. Part II: Bubble interactions above multi-cavities. Int J Heat Mass Transf. 2016;100:938–48. https://doi.org/10.1016/j.ijheatmasstransfer.2016.04.082.

    Article  CAS  Google Scholar 

  215. Yao S, Huang T, Zhao K, Zeng J, Wang S. Simulation of flow boiling of nanofluid in tube based on LBM. Therm Sci. 2017. https://doi.org/10.2298/TSCI160817006Y.

    Article  Google Scholar 

  216. Xu ZG, Qin J, Qu GM. Numerical and experimental study of pool boiling heat transfer mechanisms in V-shaped grooved porous metals. Int J Therm Sci. 2022. https://doi.org/10.1016/j.ijthermalsci.2021.107393.

    Article  Google Scholar 

  217. Verdier W, Kestener P, Cartalade A. Performance portability of lattice Boltzmann methods for two-phase flows with phase change. Comput Methods Appl Mech Eng. 2020;370:113266. https://doi.org/10.1016/j.cma.2020.113266.

    Article  Google Scholar 

  218. Succi S. Lattice Boltzmann 2038. EPL Europhys Lett. 2015;109:50001. https://doi.org/10.1209/0295-5075/109/50001.

    Article  CAS  Google Scholar 

  219. Chen J, Ahmad S, Deng W, Cai J, Zhao J. Micro/nanoscale surface on enhancing the microchannel flow boiling performance: A Lattice Boltzmann simulation. Appl Therm Eng. 2022;205:118036. https://doi.org/10.1016/j.applthermaleng.2022.118036.

    Article  Google Scholar 

  220. Dong B, Zhang Y, Zhou X, Chen C, Li W. Numerical simulation of bubble dynamics in subcooled boiling along inclined structured surface. J Thermophys Heat Transf. 2021;35:16–27. https://doi.org/10.2514/1.T5906.

    Article  CAS  Google Scholar 

  221. Fei L, Yang J, Chen Y, Mo H, Luo KH. Mesoscopic simulation of three-dimensional pool boiling based on a phase-change cascaded lattice Boltzmann method. Phys Fluids. 2020;32:103312. https://doi.org/10.1063/5.0023639.

    Article  CAS  Google Scholar 

  222. Feng Y, Chang F, Hu Z, Li H, Zhao J. Investigation of pool boiling heat transfer on hydrophilic-hydrophobic mixed surface with micro-pillars using LBM. Int J Therm Sci. 2021;163:106814. https://doi.org/10.1016/j.ijthermalsci.2020.106814.

    Article  Google Scholar 

  223. Gong S, Cheng P. Numerical simulation of pool boiling heat transfer on smooth surfaces with mixed wettability by lattice Boltzmann method. Int J Heat Mass Transf Elsevier. 2015;80:206–16. https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.092.

    Article  Google Scholar 

  224. Guan G, Shan X, Nie D. Lattice Boltzmann simulation of the growth and departure of vapor bubble in flow boiling. J Phys Conf Ser. 2020. https://doi.org/10.1088/1742-6596/1670/1/012006.

    Article  Google Scholar 

  225. Wang H, Lou Q, Liu G, Li L. Effects of contact angle hysteresis on bubble dynamics and heat transfer characteristics in saturated pool boiling. Int J Therm Sci. 2022;178:107554. https://doi.org/10.1016/j.ijthermalsci.2022.107554.

    Article  Google Scholar 

  226. Sun T. A numerical study on dynamics behaviors of multi bubbles merger during nucleate boiling by lattice Boltzmann method. Int J Multiph Flow Elsevier. 2019;118:128–40. https://doi.org/10.1016/j.ijmultiphaseflow.2019.04.011.

    Article  CAS  Google Scholar 

  227. Wang J, Cheng Y, Bin LX, Li FC. Experimental and LBM simulation study on the effect of bubbles merging on flow boiling. Int J Heat Mass Transf. 2019;132:1053–61. https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.140.

    Article  CAS  Google Scholar 

  228. Zhan H, Li S, Jin Z, Zhang G, Wang L, Li Q, et al. Study on boiling heat transfer of surface modification based on Lattice Boltzmann and experiments. J Mech Sci Technol. 2022;36:1025–39. https://doi.org/10.1007/s12206-022-0148-0.

    Article  Google Scholar 

  229. Qin J, Xu ZY, Xu ZG. Pore-scale investigation on flow boiling heat transfer mechanisms in gradient open-cell metal foams by LBM. Int Commun Heat Mass Transf Elsevier. 2020;119:104974. https://doi.org/10.1016/j.icheatmasstransfer.2020.104974.

    Article  CAS  Google Scholar 

  230. Zarghami A, Van den Akker HEA. Thermohydrodynamics of an evaporating droplet studied using a multiphase lattice Boltzmann method. Phys Rev E APS. 2017;95:43310. https://doi.org/10.1103/PhysRevE.95.043310.

    Article  Google Scholar 

Download references

Acknowledgements

AC acknowledges support from AICTE under QIP programme. This paper originates from an invited talk (by Dr. Himadri Chattopadhyay) presented at 48th National Fluid Mechanics and Fluid Power Conference, 2021.

Funding

All India Council for Technical Education, QIP Scholar, Anukampa Chau Pattnaik.

Author information

Authors and Affiliations

Authors

Contributions

AC and RS conducted literature survey and prepared draft. HC is responsible for conceptualization, supervision and prepared final draft.

Corresponding author

Correspondence to Himadri Chattopadhyay.

Ethics declarations

Conflict of interest

There is no conflict of interest in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Different multiphase lattice Boltzmann (LB) models for boiling and evaporation are summed up in Table 4. LB models with collision operator and equation of states have been cited. Table 4 also lists the nature of boiling.

Table 4 Summary of LBM studies on liquid—gas phase change problems

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chau Pattnaik, A., Samanta, R. & Chattopadhyay, H. A brief on the application of multiphase lattice Boltzmann method for boiling and evaporation. J Therm Anal Calorim 148, 2869–2904 (2023). https://doi.org/10.1007/s10973-022-11820-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11820-8

Keywords

Navigation