Skip to main content
Log in

Synthesis, magnetic and magnetocaloric properties of transition element doped La0.67Ba0.33MnO3

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Colossal magnetoresistance materials have demonstrated large changes in resistance in the presence of magnetic fields. In the current work, a group of such materials, with the compositional formula La0.67Ba0.33MnO3 and 10% Fe, Co, Ni, Zn doped La0.67Ba0.33MnO3 have been prepared by conventional solid-state method. Structural analysis has been carried out by X-Ray diffraction method followed by Rietveld analysis. Magnetic transition between ferromagnetism to paramagnetism has been observed from the magnetic characterizations. Parameters such as Curie temperature (θP) and effective magnetic moment (µeff) are obtained from susceptibility analysis subject to Curie–Weiss law. Furthermore, magnetocaloric nature of the samples is examined from the M-H isotherms. Using Maxwell’s relations, isothermal entropy change, ∆Smax are determined to check whether the prepared samples can be used for magnetic refrigeration around the room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sen C, Gonzalo A, Elbio D. First order colossal magnetoresistance transitions in the two-orbital model for manganites. Phys Rev Lett. 2010;105: 097203.

    Article  Google Scholar 

  2. Kimura T, Tokura Y. Colossal magnetoresistive oxides in high magnetic fields. Lect Notes Phys. 2002;595:1.

    Google Scholar 

  3. Nagaev EL. Colossal-magnetoresistance materials: manganites and conventional ferromagnetic semiconductors. Phys Rep. 2001;346:391.

    Article  Google Scholar 

  4. Pavan Kumar N, Lalitha G, Sagar E, VenugopalReddy P. and Magnetocaloric behavior of rare earth doped La0.67Ba0.33MnO3. Phys B: Phys Condens Matter. 2014;457:275–9.

    Article  Google Scholar 

  5. Lalitha G, Venugopal P. Elastic anomalies of La0.67Sr0.33-xBaxMnO3 in the vicinity of TC. Phys B: Phys Condens Matter. 2011;406:3570.

    Article  Google Scholar 

  6. Lalitha G, Das D, Bahadur D, Venugopal P. Elastic behavior of La0.67Ca0.33MnO3: ZrO2 composites. J Alloys Compd. 2007;464:6.

    Article  Google Scholar 

  7. Lalitha G, Pavan N, Venugopal P. Influence of chromium doping on electrical and magnetic behavior of Nd0.5Sr0.5MnO3 system. J Low Temp Phys. 2018;192:2.

    Article  Google Scholar 

  8. Mootabian M, Ghorbani SR, Kompany A, Ebrahimizadeh AM. Effect of Fe and Co doping on structural and electrical properties of La0.5Sr1.5MnO4 layered-structure and the corresponding La0.5Sr0.5MnO3 perovskite. J Alloys Compd. 2021;868:159185.

    Article  CAS  Google Scholar 

  9. Kharrat N, Chihaoui S, Cheikhrouhou-Koubaa W, Koubaa M, Cheikhrouhou A. Structural, magnetic and magnetocaloric investigation of La0.67Ba0.33Mn1-xNixO3 (x = 0, 0.025 and 0.075) manganite. J Mater Sci: Mater Electron. 2018;29:17187–94.

    CAS  Google Scholar 

  10. Sotirova EV-Haralambeva, Wang XL, Liu KH , Silver T, Konstantinov K, Horvat J. Zinc doping effects on the structure, transport and magnetic properties of La0.7Sr0.3Mn1-xZnxO3 manganite oxide. Sci Technol Adv Mater. 2003;4:149.

  11. Lalitha G, Venugopal RP. Ultrasonic velocity studies in the vicinity of TC of bismuth doped manganites. J Phys: Condens. 2009;70:056003.

    Google Scholar 

  12. Ahmed H, Shakeel K, Wasi K, Razia N and Imran Khan. Study of structural, electrical and magnetic properties of Zn doped La0.67Sr0.33MnO3 . J Alloys Compd. 2012 ;527:49.

  13. Selda KC, Akca G, Ekicibil A. Impact of small Er rare earth element substitution on magnetocaloric properties of (La0.9Er0.1)0.67Pb0.33MnO3 perovskite. J Mol Struct. 2019;1196:658–61.

    Article  Google Scholar 

  14. Baazaoui M, Boudard M, Zemni S. Magnetocaloric properties in Ln0.67Ba0.33Mn1 − xFexO3 (Ln = La or Pr) manganites. Mater Lett. 2011;65:2093–5.

    Article  CAS  Google Scholar 

  15. Cherif W, Ben Hassnie R, Alonso JA, Mompean FJ, Fernandez-Diaz MT, Elhalouani F. Effect of Co substitution on the physicochemical properties of La0.67Sr0.22Ba0.11Mn1 − x Co x O3 compounds (0 ≤ x ≤ 0.3). Bull Mater Sci. 2017;40:79–85.

    Article  CAS  Google Scholar 

  16. Riahi K, Messaoui I, Cheikhrouhou-Koubaa W, Mercone S, Leridon B, Koubaa M, Cheikhrouhou A. Effect of synthesis route on the structural, magnetic and magnetocaloric properties of La0.78Dy0.02Ca0.2MnO3 manganite: a comparison between sol-gel, high-energy ball-milling and solid state process. J Alloys Compd. 2016;668:1028–38.

    Article  Google Scholar 

  17. Jithin PV and Joji Kurian. Influence of Ba doping on the structural and bonding characteristics of sol-gel prepared LaMnO3. AIP Conference Proceedings 2019;2115:030358.

  18. Luis Andrés Burrola Gándara, Lizeth Vázquez Zubiate, Diana M Carrillo Flores, José T Elizalde Galindo, Carlos Ornelas and Manuel Ramos. Tuning Magnetic Entropy Change and Relative Cooling Power in La0.7Ca0.23Sr0.07MnO3 Electrospun Nanofibers. Nanomaterials. 2020;10:435.

  19. Raveau B, Martin C, Maignan A, Hervieu M. Insulator-metal like transition in air-synthesized Mn4+-rich La1-xBaxMnO3: grain boundary phase effect. J Phys: Condens Mater. 2002;14:1297–306.

    CAS  Google Scholar 

  20. Ben Jemaa F, Mahmood SH, Ellouze M, Hill EK, Halouani F. Critical behavior in Fe-doped manganites La0.67Ba0.22Sr0.11Mn1−x Fe x O3 (0 ≤ x ≤ 0.2). J Matter phys. 2014;49:6883–91.

    CAS  Google Scholar 

  21. Vijayanandhini K, Kutty TRN. Effects of Zn substitution on the magnetic and transport properties of La0.6Sr0.4Mn1−yZnyO3−δ (0≤y≤0.3). Solid State Commun. 2007;141:252.

    Article  CAS  Google Scholar 

  22. Banerjee BK. On a generalized approach to first and second order magnetic transitions. Phys Lett. 1964;12:16–7.

    Article  Google Scholar 

  23. Pecharsky VK, Gschneidner KA Jr. Magnetic refrigeration materials (invited). J Appl Phys. 1999;86:565.

    Article  CAS  Google Scholar 

  24. Phan MH, Yu SC. Review of the magnetocaloric effect in manganite materials. J Magn Magn Mater. 2007;308:325.

    Article  CAS  Google Scholar 

  25. Abd El-Moez A. Mohamed, Mohamed A Mohamed, Vega V, Hernando B and Ahmed A M. Tuning Magnetoresistive and Magnetocaloric properties via grain boundaries engineering in granular. RSC Adv.2016;6: 77284–90.

Download references

Acknowledgements

The authors are thankful to the Matrusri Educational Society for providing financial support to carry out this research. We also thankful to the Principal and Head, Department of Sciences and Humanities, Matrusri Engineering College, Hyderabad, for providing a platform to carry out this research work. The authors also thank Dr. Himalay Basumatary, Scientist, DMRL, Hyderabad, for providing X-ray diffraction facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Pavan Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priyanka, B., Krishna Teja, K., Sagar, E. et al. Synthesis, magnetic and magnetocaloric properties of transition element doped La0.67Ba0.33MnO3. J Therm Anal Calorim 147, 14123–14132 (2022). https://doi.org/10.1007/s10973-022-11714-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11714-9

Keywords

Navigation