Skip to main content
Log in

A comparative study of magnetic, and magnetocaloric properties of different transition metal-doped La0.67Sr0.33AO3 (A: Mn, Co, Cr, and Fe) samples

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present work, structural, magnetic, and magnetocaloric properties of La0.67Sr0.33AO3 (A: Mn, Co, Cr and Fe) samples were examined. XRD analyses revealed that all samples produced by the sol–gel method and subjected to the same grinding and heat treatment steps crystallized in the perovskite crystal structure. In order to examine the magnetic behavior of the samples, temperature-dependent magnetization (M(T)) measurements were carried out. It was found that La0.67Sr0.33MnO3, which has the highest magnetization value, has the highest Curie temperature (TC = 368.2 K). In order to determine the magnetic phase transition order and calculate magnetic entropy change (\(-\Delta {S}_{\mathrm{M}})\) value, field-dependent magnetization (M(H)) measurements in the transition temperature region were carried at zero field-cooled (ZFC) and field-cooled (FC) processes. The maximum magnetic entropy change (\(-\Delta {S}_{\mathrm{M}}^{\mathrm{max}}\)) of La0.67Sr0.33MnO3 sample was calculated as 1.5 Jkg−1 K−1 under 1 T magnetic field change. La0.67Sr0.33CoO3 sample, in which antiferromagnetic (AFM) and ferromagnetic (FM) interactions coexist, exhibits a paramagnetic (PM)-FM phase transition at 244.1 K. At 1 T magnetic field change, the (\(-\Delta {S}_{\mathrm{M}}^{\mathrm{max}}\)) was found to be 0.145 Jkg−1 K−1 for this sample. La0.67Sr0.33CrO3 and La0.67Sr0.33FeO3 samples showed weak FM properties due to the different magnetic interactions originating from the ions in the B-sites of the samples. The magnetic phase transition is second-order for all samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data sets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. S. M. Abdelbasir and A. E. Shalan, Intriguing properties and applications of functional magnetic materials, Functional Materials (IntechOpen, 2018), p. 81386

  2. I. Akkurt, A. Calik, H. Akyildirim, The boronizing effect on the radiation shielding and magnetization properties of AISI 316L austenitic stainless steel. Nucl. Eng. Des. 241–1, 55–58 (2011)

    Google Scholar 

  3. J. Cibert, J.-F. Bobo, U. Lüders, Development of new materials for spintronics. Comptes Rendus Phys. 6–9, 977–996 (2005)

    Google Scholar 

  4. Z. Fan, K. Sun, J. Wang, Perovskites for photovoltaics: a combined review of organic-inorganic halide perovskites and ferroelectric oxide perovskites. J. Mater. Chem. A 3, 18809–18828 (2015)

    CAS  Google Scholar 

  5. M.-H. Phan, H.-X. Peng, S.-C. Yu, N.D. Tho, H.N. Nhat, N. Chau, Manganese perovskites for room temperature magnetic refrigeration applications. J. Magn. Magn. Mater. 316, 562–565 (2007)

    Google Scholar 

  6. R.A. Rincõn, E. Ventosa, F. Tietz, J. Masa, S. Seisel, V. Kuznetsov, W. Schuhmann, Evaluation of Perovskites as Electrocatalysts for the Oxygen Evolution Reaction. ChemPhysChem 15, 2810–2816 (2014)

    Google Scholar 

  7. A. Barman, S. Kar-Narayan, D. Mukherjee, Caloric effects in perovskite oxides. Adv. Mater. Inter. 1900291, 1–31 (2019)

    Google Scholar 

  8. M.-H. Phan, S.-C. Yu, Review of the magnetocaloric effect in manganite materials. J. Magn. Magn. Mater. 308, 325–340 (2007)

    CAS  Google Scholar 

  9. M.S. Islam, D.T. Hanh, F.A. Khan, M.A. Hakim, D.L. Minh, N.N. Hoang, N.H. Hai, N. Chau, Giant magneto-caloric effect around room temperature at moderate low field variation in La0.7(Ca1−xSrx)0.3MnO3 perovskites. Phys. B 404, 2495–2498 (2009)

    CAS  Google Scholar 

  10. A. Tozri, J. Khelifi, E. Dhahri, E.K. Hlil, Influence of Pr-doping on magnetic phase transition and magnetocaloric effect of La07−xPrxBa03MnO3 manganite. Mater. Chem. Phys. 149–150, 728–733 (2015)

    Google Scholar 

  11. T. Gottschall, K.P. Skokov, M. Fries, A. Taubel, I. Radulov, F. Scheibel, D. Benke, S. Riegg, O. Gutfleisch, Making a cool choice: the materials library of magnetic refrigeration. Adv. Energy Mater. 9(34), 1901322 (2019)

    Google Scholar 

  12. K.A. Gschneidner, V.K. Pecharsky, Magnetocaloric materials. Annu. Rev. Mater. Sci. 1, 387–429 (2000)

    Google Scholar 

  13. A. Coşkun, E. Taşarkuyu, A.E. Irmak, M. Acet, Y. Samancıoğlu, S. Aktürk, Magnetic properties of La0.65Ca0.30Pb0.05Mn0.9B0.1O3(B = Co, Ni, Cu and Zn. J. Alloys Compd. 622, 796–804 (2015)

    Google Scholar 

  14. Y. Regaieg, M. Koubaa, W. Cheikhrouhou-Koubaa, A. Cheikhrouhou, T. Mhiri, Magnetocaloric effect above room temperature in the K-doped La0.8Na0.2−xKxMnO3 manganites. J. Alloys Compd. 502(2), 270–274 (2010)

    CAS  Google Scholar 

  15. A. Mehri, W. Cheikh-Rouhou Koubaa, M. Koubaa, A. Cheikh-Rouhou, Effect of sodium substitution on the structural, magnetic and magnetocaloric properties of La0.5Ca0.5MnO3 perovskite manganites. Phys. Procedia 2–3, 975–982 (2009)

    Google Scholar 

  16. Y. Regaieg, M. Koubaa, W. Cheikhrouhou-Koubaa, A. Cheikhrouhou, L. Sicard, S. Ammar-Merah, F. Herbst, Structure and magnetocaloric properties of La0.8Ag0.2−xKxMnO3 perovskite manganites. Mater. Chem. Phys. 132, 839–845 (2012)

    CAS  Google Scholar 

  17. A.K. Meenakshi, R.N. Mahato, Effect of Fe substitution on structural, magnetic and magnetocaloric properties of nanocrystalline La0.7Te0.3Mn1-xFexO3 (x=0.1, 0.3). Phys. B Condens. Matt. 511, 83–88 (2016)

    Google Scholar 

  18. Y. Samancıoğlu, A. Coşkun, Magnetic properties of A- and B-site cation doped La0.65Ca0.35MnO3 manganites. J. Alloys Compd. 507(2), 380–385 (2010)

    Google Scholar 

  19. S.K. Barik, C. Krishnamoorthi, R. Mahendiran, Effect of Fe substitution on magnetocaloric effect in La0.7Sr0.3Mn1−xFexO3 (0.05≤x≤0.20). J. Magn. Magn. Mater. 323, 1015–1021 (2011)

    CAS  Google Scholar 

  20. C. Krishnamoorthi, S.K. Barik, Z. Siu, R. Mahendiran, Normal and inverse magnetocaloric effects in La0.5Ca0.5Mn1-xNixO3. Solid State Commun. 150, 1670–1673 (2010)

    CAS  Google Scholar 

  21. Z.M. Wang, G. Ni, Q.Y. Xu, H. Sang, Y.W. Du, Magnetic entropy change in perovskite manganites. Phys. B Condens. Matt. 234, 371–374 (2001)

    CAS  Google Scholar 

  22. Q. Yu, J. Zhang, R. Jia, C. Jing, S. Cao, Double M–I transitions and low-temperature resistivity minimum of La2/3Ca1/3Mn1−xCoxO3(0⩽x⩽0.15) manganite. J. Magn. Magn. Mater. 320, 3313–3317 (2008)

    CAS  Google Scholar 

  23. M.A. Gdaiem, S. Ghodhbane, A. Dhahri, J. Dhahri, E.K. Hlil, Effect of cobalt on structural, magnetic and magnetocaloric properties of La0.8Ba0.1Ca0.1Mn1-xCoxO3(x = 0.00, 0.05 and 0.10) manganites. J. Alloys Compd. 681, 547–554 (2016)

    CAS  Google Scholar 

  24. X. Kong, J. Wang, Z. Zou, F. Long, Y. Wu, Effect of sodium doping on magnetic and magnetocaloric properties of La0.65Sr0.35MnO3 manganites. J. Supercond. Nov. Magn. 31, 373–379 (2017)

    Google Scholar 

  25. A.O. Ayaş, M. Akyol, A. Ekicibil, Structural and magnetic properties with large reversible magnetocaloric effect in (La1-xPrx)0.85Ag0.15MnO3 (0.0 ≤ x ≤ 0.5) compounds. Philos. Mag. 96, 922–937 (2016)

    Google Scholar 

  26. S.K. Çetin, G. Akça, A. Ekicibil, Impact of small Er rare earth element substitution on magnetocaloric properties of (La0.9Er0.1)0.67Pb0.33MnO3 perovskite. J. Mol. Struct. 1196, 658–661 (2019)

    Google Scholar 

  27. R. Thaljaoui, K. Pękała, M. Pękała, W. Boujelben, J. Szydłowska, J.-F. Fagnard, P. Vanderbemden, A. Cheikhrouhou, Magnetic susceptibility and electron magnetic resonance study of monovalent potassium doped manganites Pr0.6Sr0.4−xKxMnO3. J. Alloys Compd. 580, 137–142 (2013)

    CAS  Google Scholar 

  28. N.H. Luong, D.T. Hanh, N. Chau, N.D. Tho, T.D. Hiep, Properties of perovskites La1−xCdxMnO3. J. Magn. Magn. Mater. 290–291, 690–693 (2005)

    Google Scholar 

  29. N.I. Solin, S.V. Naumov, N.M. Chebotaev, A.V. Korolev, Effect of the oxygen excess on the properties of weakly doped La1-xCaxMnO3 lanthanum manganites. Phys. Solid State 52, 289–297 (2010)

    CAS  Google Scholar 

  30. P. Amirzadeh, H. Ahmadvand, P. Kameli, B. Aslibeiki, H. Salamati, A.G. Gamzatov, A.M. Aliev, I.K. Kamilov, Phase separation and direct magnetocaloric effect in La0.5Ca0.5 MnO3 manganite. J. Appl. Phys. 113, 3–8 (2013)

    Google Scholar 

  31. Y. Wang, J. Shao, Y. Yu, Q. Shi, Y. Zhu, T. Miao, H. Lin, L. Xiang, Q. Li, P. Cai, W. Wang, L. Yin, J. Shen, Enhanced magnetocaloric effect in manganite nanodisks. Phys. Rev. Mater. 3, 84411 (2019)

    CAS  Google Scholar 

  32. A.E.M.A. Mohamed, B. Hernando, Self-assembled impurity and its effect on magnetic and magnetocaloric properties of manganites. Ceram. Int. 44, 17044–17049 (2018)

    CAS  Google Scholar 

  33. B. Alzahrani, G. Akça, S. Hcini, M.L. Bouazizi, Microstructural analysis, magnetic properties, and critical behavior of La0.7Ba0.15Sr0.15CoO3 perovskite. J. Supercond. Nov. Magn. 34, 507–518 (2021)

    CAS  Google Scholar 

  34. S. Belhamra, R. Masrour, A. Jabar, E.K. Hlil, A comparative study of the structural, electronic, magnetic properties and magnetocaloric effect of perovskite LaRO3 (R = Mn, Cr and Fe). Polyhedron 193, 114891 (2021)

    CAS  Google Scholar 

  35. A. El-Moezm, A. Mohamed, P. Álvarez-Alonso, B. Hernando, The intrinsic exchange bias effect in the LaMnO3 and LaFeO3 compounds. J. Alloys Compd. 850, 156713 (2021)

    Google Scholar 

  36. M. Itoh, I. Natori, S. Kubota, K. Motoya, Hole-doping effect on magnetic properties of Lal-xSrxCoO3. J. Magn. Magn. Mater. 140, 1811–1812 (1995)

    Google Scholar 

  37. Z. Liu, W.G. Lin, K.W. Zhou, J.L. Yan, Effect of Cu doping on the structural, magnetic and magnetocaloric properties of La0.7Sr0.25Na0.05Mn1−xCuxO3 manganites. Ceram. Int. 44, 2797–2802 (2018)

    CAS  Google Scholar 

  38. E. Taşarkuyu, A. Coşkun, A.E. Irmak, S. Aktürk, G. Ünlü, Y. Samancıoğlu, A. Yücel, C. Sarıkürkçü, S. Aksoy, M. Acet, Effect of high temperature sintering on the structural and the magnetic properties of La1.4Ca1.6Mn2O7. J. Alloys Compd. 509, 3717–3722 (2011)

    Google Scholar 

  39. B.Y.R.D. Shannon, Revised effective ıonic radii and systematic studies of ınteratomie distances in halides and chaleogenides central research and development department , experimental station , E . L Du Pont de Nemours The effective ionic radii of Shannon & Prewitt. Acta Cryst. A 32, 751–767 (1976)

    Google Scholar 

  40. H. Hayashi, H. Inaba, M. Matsuyama, N.G. Lan, M. Dokiya, H. Tagawa, Structural consideration on the ionic conductivity of perovskite-type oxides. Solid State Ion. 122, 1–15 (1999)

    CAS  Google Scholar 

  41. T. Raoufi, M.H. Ehsani, D.S. Khoshnoud, Magnetocaloric properties of La0.6Sr0.4MnO3prepared by solid state reaction method. J. Alloys Compd. 689, 865–873 (2016)

    CAS  Google Scholar 

  42. J. Wu, C. Leighton, Glassy ferromagnetism and magnetic phase separation in La1−xSrxCoO3. Phys. Rev. B 67, 1–16 (2003)

    CAS  Google Scholar 

  43. E. Fertman, S. Dolya, V. Desnenko, A. Beznosov, M. Kajňaková, A. Feher, Cluster glass magnetism in the phase-separated Nd2/3Ca1/3MnO3 perovskite. J. Magn. Magn. Mater. 324, 3213–3217 (2012)

    CAS  Google Scholar 

  44. V. Markovich, I. Fita, R. Puzniak, C. Martin, K. Kikoin, A. Wisniewski, S. Hebert, A. Maignan, G. Gorodetsky, Metastable diamagnetism in the manganite Sm0.1Ca0.84Sr0.06 MnO3. Phys. Rev. B 74, 1–6 (2006)

    Google Scholar 

  45. T. Fujiwara, M. Matsukawa, T. Aoyagi, S. Kobayashi, H. Taniguchi, S. Nimori, R. Suryanarayanan, Magnetic and thermodynamic properties of the lightly electron-doped manganite compound (Ca, Sr). J. Magn. Magn. Mater. 378, 451–456 (2015)

    CAS  Google Scholar 

  46. T.A. Onishchenko, Diamagnetism of band electrons in macrocopically inhomogeneous crystals”. Pis’ma Zh. Eksp. Teor. Fiz. 33, 93–97 (1981)

    Google Scholar 

  47. B. Tiwari, A. Dixit, M.S.R. Rao, Anomalous magnetic behavior and complex magnetic structure of proximate LaCrO3-LaFeO3 system. Mater. Res. Express 6, 126119 (2019)

    CAS  Google Scholar 

  48. A. Dhahri, M. Jemmali, K. Taibi, E. Dhahri, E.K. Hlil, Structural, magnetic and magnetocaloric properties of La0.7Ca0.2Sr0.1Mn1-xCrxO3compounds with x = 0, 0.05 and 0.1. J. Alloys Compd. 618, 488–496 (2015)

    CAS  Google Scholar 

  49. E. Oumezzine, S. Hcini, E.-K. Hlil, E. Dhahri, M. Oumezzine, Effect of Ni-doping on structural, magnetic and magnetocaloric properties of nanocrystalline manganites synthesized by Pechini sol–gel method. J. Alloys Compd. 615, 553–560 (2014)

    CAS  Google Scholar 

  50. T. Moriya, Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960)

    CAS  Google Scholar 

  51. H. Baaziz, A. Tozri, E. Dhahri, E.K. Hlil, Magnetocaloric properties of La0.67Sr0.33MnO3 tunable by particle size and dimensionality. Chem. Phys. Lett. 691, 355–359 (2018)

    CAS  Google Scholar 

  52. A. Rostamnejadi, M. Venkatesan, P. Kameli, H. Salamati, J.M.D. Coey, Magnetocaloric effect in La0.67Sr0.33MnO3manganite above room temperature. J. Magn. Magn. Mater. 323, 2214–2218 (2011)

    CAS  Google Scholar 

  53. M.S. Anwar, S. Kumar, F. Ahmed, G.W. Kim, B.H. Koo, Microwave assisted hydrothermal synthesis and magnetocaloric properties of La0.67Sr0.33MnO3 manganite. J. Nanosci. Nanotechnol. 12, 5523–5526 (2012)

    CAS  Google Scholar 

  54. A. Ettayfi, R. Moubah, A. Boutahar, E.K. Hlil, H. Lassri, Structural, magnetic, magnetocaloric, and critical exponent properties of La0.67Sr0.33MnO3 powders synthesized by solid-state reaction. J. Supercond. Nov. Magn. 29, 133–138 (2016)

    CAS  Google Scholar 

  55. K. Swetha, S. Bharadwaj, N.P. Kumar, J.A. Chelvane, Y.K. Lakshmi, Above room temperature magnetic entropy in non-stoichiometric manganese of La0.67Sr0.33MnO3 manganites. Appl. Phys. A Mater. Sci. Process. 128, 1–8 (2022)

    Google Scholar 

  56. P. Nisha, S.S. Pillai, K.G. Suresh, M.R. Varma, Influence of Dy addition on the magnetocaloric effect of La0.67Ca0.33Mn0.9V0.1O3 ceramics. J. Magn. Magn. Mater. 324, 37–43 (2012)

    CAS  Google Scholar 

  57. K. Swetha, S. Bharadwaj, J.A. Chelvane, H. Afzal, R. Venkatesh, K.V.S. Kumar, K.L. Yanapu, Effect of manganese stoichiometry at B-site on magneto-transport and magnetic properties of La0.67Sr0.33MnO3 manganites. Ceram. Int. 48, 12779–12789 (2022)

    CAS  Google Scholar 

  58. Z. Wei, N.A. Liedienov, Q. Li, A.V. Pashchenko, W. Xu, V.A. Turchenko, M. Yuan, I.V. Fesych, G.G. Levchenko, Influence of post-annealing, defect chemistry and high pressure on the magnetocaloric effect of non-stoichiometric La0.8-xK0.2Mn1+xO3 compounds. Ceram. Int. 47, 24553–24563 (2021)

    CAS  Google Scholar 

  59. B.K. Banerjee, On a generalised approach to first and second order magnetic transitions. Phys. Lett. 12, 16–17 (1964)

    Google Scholar 

  60. V. Franco, A. Conde, J.M. Romero-Enrique, J.S. Blázquez, A universal curve for the magnetocaloric effect: an analysis based on scaling relations. J. Phys. Condens. Matter 20(2028), 285207 (2008)

    Google Scholar 

  61. V. Franco, A. Conde, M.D. Kuzmin, J.M. Romero-Enrique, The magnetocaloric effect in materials with a second order phase transition: are TC and Tpeak necessarily coincident? J. Appl. Phys. 105, 7–9 (2009)

    Google Scholar 

  62. J.S. Amaral, M.S. Reis, V.S. Amaral, T.M. Mendonça, J.P. Araújo, M.A. Sá, P.B. Tavares, J.M. Vieira, Magnetocaloric effect in Er- and Eu-substituted ferromagnetic La-Sr manganites. J. Magn. Magn. Mater. 290–291, 686–689 (2005)

    Google Scholar 

  63. G. Akça, S.K. Çetin, A. Ekicibil, Structural, magnetic and magnetocaloric properties of (La1−xSmx)0.85K0.15MnO3 (x = 0.0, 0.1, 0.2 and 0.3) perovskite manganites. Ceram. Int. 43, 15811–15820 (2017)

    Google Scholar 

  64. M. Nasri, E. Dhahri, E.K. Hlil, Estimation of the magnetic entropy change by means of Landau theory and phenomenological model in La0.6Ca0.2S0.2MnO3/Sb2O3 ceramic composites. Phase Transit. 91, 573–585 (2018)

    CAS  Google Scholar 

  65. L.A. Burrola-Gándara, C.R. Santillan-Rodriguez, F.J. Rivera-Gomez, R.J. Saenz-Hernandez, M.E. Botello-Zubiate, J.A. Matutes-Aquino, Comparison of the order of magnetic phase transitions in several magnetocaloric materials using the rescaled universal curve, Banerjee and mean field theory criteria. J. Appl. Phys. 117, 1–5 (2015)

    Google Scholar 

Download references

Acknowledgements

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

ATC: Performed the SEM and XRD analyses; Preparation of samples; Editing. YSA: Performed the SEM and XRD analyses; Experimental support. NG: Preparation of samples; Visualization. GA: Experimental support; Proofread the paper. SKÇ: Proofread the paper; Performed the magnetic measurements. AE: Experimental resources; Proofread the paper; Review & editing; Validation. AC: Investigations; Conceptualization; Writing -Review & Editing; Validation; Supervision.

Corresponding author

Correspondence to A. Coşkun.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coşkun, A.T., Ak, Y.S., Güleç, N. et al. A comparative study of magnetic, and magnetocaloric properties of different transition metal-doped La0.67Sr0.33AO3 (A: Mn, Co, Cr, and Fe) samples. J Mater Sci: Mater Electron 34, 1257 (2023). https://doi.org/10.1007/s10854-023-10654-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10654-w

Navigation