Skip to main content
Log in

Assessments of surface heat flux from rapid temperature sensors at various angles of attack over a plate

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The surface heat flux measurement is challenging in numerous engineering applications such as aerospace engineering, internal combustion engines, advanced manufacturing processes is challenging due to rapid change in flow conditions. The coaxial thermocouples (CTs) have the response time in the range of milliseconds or less and they can capture the heating rate in impulsive ground-based conditions. The K, E, and J-type coaxial thermocouples were used to measure surface heat flux over a flat plat at different angles of attack 0°, 15°, 30°, and 45° exposing them into a convective based flow environment. The numerical analysis was performed by using software package Ansys-fluent for the experimental conditions to validate the experimental results. It has been noticed that, the average errors between experimental and numerical results are found in the range of ± 0.3% and ± 2.5% for transient temperature and surface heat flux respectively. This investigation is analogous to aerodynamics heating facilities and the results are confirmed that these in-house fabricated coaxial thermocouples are capable to measure surface heat flux at different location of the aerodynamic vehicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AOA:

Angle of attack (°)

c:

Specific heat (Jkg1 K1)

k:

Thermal conductivity (Wm1 K1)

\(q_{{\rm{s}}}\) :

Surface heat flux (Wm2)

t:

Time(s)

T:

Temperature (K)

S:

Sensitivity (µVK1)

\(T_{{\rm{s}}} \left( t \right)\) :

Temperature function of time (K)

ρ :

Density (kgm3)

β :

Effective thermal product (Jm2 s0.5 K1)

τ :

Dummy time variable (s)

\(\alpha_{0}\) :

Thermal coefficient of resistance (K1)

V :

Velocity (ms1)

P :

Pressure (kgm1 s2

References

  1. Li J, Chen H, Zhang S, Zhang X, Yu H. On the response of coaxial surface thermocouples for transient aerodynamic heating measurements. Exp Thermal Fluid Sci. 2017;86:141–8.

    Article  Google Scholar 

  2. Tunay T, Sahin B, Ozbolat V. Effects of rear slant angles on the flow characteristics of Ahmed body. Exp Thermal Fluid Sci. 2014;57:165–6.

    Article  Google Scholar 

  3. Marr MA, Wallace JS, Chandra S, Pershin L, Mostaghimi J. A fast response thermocouple for internal combustion engine surface temperature measurements. Exp Thermal Fluid Sci. 2010;34(2):183–9.

    Article  CAS  Google Scholar 

  4. Sahoo N, Kumar R. Performance assessment of thermal sensors during short-duration convective surface heating measurements. Heat Mass Transf. 2016;52(9):2005–13.

    Article  Google Scholar 

  5. Manjhi SK, Kumar R. Comparative performance of K, E, and J-type fast response coaxial probes for short-period transient measurements. J Therm Sci Eng Appl. 2021;13:3.

    Article  Google Scholar 

  6. Werschmoeller D, Li X, Ehmann K. Measurement of transient tool-internal temperature fields during hard turning by insert-embedded thin film sensors. J Manuf Sci Eng. 2012;134:6.

    Article  Google Scholar 

  7. Sahoo N, Peetala RK. Transient temperature data analysis for a supersonic flight test. J Heat Transfer. 2010;132:8.

    Article  Google Scholar 

  8. Saravanan S, Jagadeesh G, Reddy KP. Convective heat-transfer rate distributions over a missile shaped body flying at hypersonic speeds. Exp Thermal Fluid Sci. 2009;33(4):782–90.

    Article  Google Scholar 

  9. Gai SL, Mudford NR. Stagnation point heat flux in hypersonic high enthalpy flow. Shock Waves. 1992;2(1):43–7.

    Article  Google Scholar 

  10. Jagadeesh G, Reddy NM, Nagashetty K, Reddy KP. Forebody convective hypersonic heat transfer measurements over large-angle blunt cones. J Spacecr Rocket. 2000;37(1):137–9.

    Article  Google Scholar 

  11. Kumar R, Sahoo N. Dynamic calibration of a coaxial thermocouples for short duration transient measurements. journal of heat transfer. 2013;135(12).

  12. Sarma S, Sahoo N, Unal A. Calibration of a silver thin film gauge for short duration convective step heat load. Sādhanā. 2016;41(7):787–4.

    Article  CAS  Google Scholar 

  13. Reddy NM, Nagashetty K, Jagadeesh G, Reddy KP. Review of hypersonic research investigations in IISc shock tunnel (HST1). Sadhana. 1996;21(6):741–73.

    Article  Google Scholar 

  14. Agarwal S, Sahoo N, Singh RK. Experimental techniques for thermal product determination of coaxial surface junction thermocouples during short duration transient measurements. Int J Heat Mass Transf. 2016;103:327–35.

    Article  Google Scholar 

  15. Bendersky D. A special thermocouple for measuring transient temperatures. Mech Eng. 1953;75(2):117.

    CAS  Google Scholar 

  16. Kovacs A, Mesler RB. Making and testing small surface thermocouples for fast response. Rev Sci Instrum. 1964;35(4):485–8.

    Article  Google Scholar 

  17. Buttsworth DR. Assessment of effective thermal product of surface junction thermocouples on millisecond and microsecond time scales. Exp Thermal Fluid Sci. 2001;25(6):409–20.

    Article  CAS  Google Scholar 

  18. Mohammed H, Salleh H, Yusoff MZ. Design and fabrication of coaxial surface junction thermocouples for transient heat transfer measurements. Int Commun Heat Mass Transfer. 2008;35(7):853–9.

    Article  CAS  Google Scholar 

  19. Ozalp N, JayaKrishna D. CFD analysis on the influence of helical carving in a vortex flow solar reactor. Int J Hydrogen Energy. 2010;35(12):6248–60.

    Article  CAS  Google Scholar 

  20. Schultz DL, Jones TV. Heat-transfer measurements in short-duration hypersonic facilities. Advisory Group For Aerospace Research And Development Neuilly-Sur-Seine Neuilly-Sur-Seine; 1973: AGARD-AG-165, University of Oxford.

  21. Taler J. Theory of transient experimental techniques for surface heat transfer. Int J Heat Mass Transf. 1996;39(17):3733–48.

    Article  CAS  Google Scholar 

  22. Db RJ. A practical guide to splines. Math Comput. 1980;34(149):325.

    Google Scholar 

  23. Kline SJ. Describing uncertainty in single sample experiments. Mech Eng. 1953;75:3–8.

    Google Scholar 

  24. Moffat RJ. Describing the uncertainties in experimental results. Exp Thermal Fluid Sci. 1988;1(1):3–17.

    Article  Google Scholar 

  25. Moffat RJ. Using uncertainty analysis in planning of an experiment. ASME J Fluids Eng. 1985;107:173–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

manjhi, S.K., Kumar, R. Assessments of surface heat flux from rapid temperature sensors at various angles of attack over a plate. J Therm Anal Calorim 147, 11493–11506 (2022). https://doi.org/10.1007/s10973-022-11341-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11341-4

Keywords

Navigation