Skip to main content
Log in

Efficiency enhancement of a refrigerator integrated with auxiliary nanofluids

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The current work investigates a unique methodology for externally cooling a refrigerator’s condenser using nanofluids. Experiments were conducted to determine the influence of aluminum and copper nanofluids on the efficiency of a refrigerator. The cooling jacket comprising of nanofluids resulted in an increase in heat transmission across the condenser. Two nanofluids namely, copper nanofluid and alumina nanofluid were prepared in volume concentrations in the range of 1–5%. The base fluid was distilled water. The refrigerator's performance was assessed by computing the coefficient of performance with two separate jacket configurations, namely nanofluid and pure water. According to the experimental results, it is reported that the employment of copper and aluminum nanofluids leads in a considerable increase in efficiency. Additionally, it was noticed that the refrigerator's performance augmented as volume fraction of nanofluid increased. The efficiency of refrigerator was augmented by 23% with alumina nanofluid jacket, whereas the efficiency was increased by 31% with copper nanofluid jacket.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data will be made available on request to the author.

Abbreviations

C :

Heat capacity, kJ Kg−1 K−1

COP:

Coefficient of performance

d :

Diameter, m

K B :

Boltzmann constant, J K−1

k :

Thermal conductivity, W m−1 K−1

l :

Mean free path, m

MWCNT:

Multi-wall carbon nano tube

m :

Mass, kg

nm:

Nanometer, m

Pr:

Prandtl number

Q :

Rate of heat transfer, kW

Re:

Reynolds number

T :

Temperature, K

u :

Experimental uncertainty

VCR:

Vapor compression refrigeration

V B :

Brownian velocity of nanoparticles

Δ :

Difference

Φ :

Volume fraction

ρ :

Density, kg m3

μ :

Dynamic viscosity, kg m1 s1

δ :

Distance between particles, m

α :

Thermal diffusivity, m2 s1

bf:

Base fluid

c:

Condenser

e:

Evaporator

eff:

Effective

HP:

Heat pump

np:

Nanoparticle

nf:

Nanofluid

p:

Constant pressure

R:

Refrigeration

s:

Solid

t:

Total

w:

Water

References

  1. Nakkaew S, Chitipalungsri T, Ahn HS, Jerng DW. Application of the heat pipe to enhance the performance of the vapor compression refrigeration system. Case Stud Therm Eng. 2019;15:100531. https://doi.org/10.1016/j.csite.2019.100531.

    Article  Google Scholar 

  2. Salem MR, El-Gammal HA, Abd-Elaziz AA, Elshazly KM. Study of the performance of a vapor compression refrigeration system using conically coiled tube-in-tube evaporator and condenser. Int J Refrig. 2019;99:393–407. https://doi.org/10.1016/j.ijrefrig.2018.12.006.

    Article  CAS  Google Scholar 

  3. Rashidi S, Mahian O, Languri EM. Applications of nanofluids in condensing and evaporating systems: a review. J Therm Anal Calorim. 2018;131(3):2027–39. https://doi.org/10.1007/s10973-017-6773-7.

    Article  CAS  Google Scholar 

  4. Jiang W, Li S, Yang L, Du K. Experimental investigation on performance of ammonia absorption refrigeration system with TiO2 nanofluid. Int J Refrig. 2019;98:80–8. https://doi.org/10.1016/j.ijrefrig.2018.09.032.

    Article  CAS  Google Scholar 

  5. Sanukrishna SS, Prakash MJ. Experimental studies on thermal and rheological behaviour of TiO 2 -PAG nanolubricant for refrigeration system. Int J Refrig. 2018;86:356–72. https://doi.org/10.1016/j.ijrefrig.2017.11.014.

    Article  CAS  Google Scholar 

  6. Jiang W, Du K, Li Y, Yang L. Experimental investigation on the influence of high temperature on viscosity, thermal conductivity and absorbance of ammonia–water nanofluids. Int J Refrig. 2017;82:189–98. https://doi.org/10.1016/j.ijrefrig.2017.05.030.

    Article  CAS  Google Scholar 

  7. Adelekan DS, Ohunakin OS, Gill J, Atiba OE, Okokpujie IP, Atayero AA. Experimental Investigation of a vapour compression refrigeration system with 15nm tio2-r600a nano-refrigerant as the working fluid. Procedia Manuf. 2019;35:1222–7. https://doi.org/10.1016/j.promfg.2019.06.079.

    Article  Google Scholar 

  8. Babarinde TO, Akinlabi SA, Madyira DM. Experimental investigation of R600a/TiO 2 /mineral oil as a drop-in replacement for R134a/POE oil in a household refrigeration system. Int J Ambient Energy. 2019;40:1–7. https://doi.org/10.1080/01430750.2019.1653983.

    Article  CAS  Google Scholar 

  9. Sanukrishna SS, Shafi M, Murukan M, Prakash MJ. Effect of SiO2 nanoparticles on the heat transfer characteristics of refrigerant and tribological behaviour of lubricant. Powder Technol. 2019;356:39–49. https://doi.org/10.1016/j.powtec.2019.07.083.

    Article  CAS  Google Scholar 

  10. Narayanasarma S, Kuzhiveli BT. Evaluation of the properties of POE/SiO2 nanolubricant for an energy-efficient refrigeration system—an experimental assessment. Powder Technol. 2019;356:1029–44. https://doi.org/10.1016/j.powtec.2019.09.024.

    Article  CAS  Google Scholar 

  11. Sharif MZ, Azmi WH, Redhwan AAM, Mamat R, Yusof TM. Performance analysis of SiO 2 /PAG nanolubricant in automotive air conditioning system. Int J Refrig. 2017;75:204–16. https://doi.org/10.1016/j.ijrefrig.2017.01.004.

    Article  CAS  Google Scholar 

  12. Ajayi OO, et al. Investigation of the effect of R134a/Al2O3 –nanofluid on the performance of a domestic vapour compression refrigeration system. Procedia Manuf. 2019;35:112–7. https://doi.org/10.1016/j.promfg.2019.05.012.

    Article  Google Scholar 

  13. Sanukrishna SS, Prakash MJ. Thermal and rheological characteristics of refrigerant compressor oil with alumina nanoparticles—an experimental investigation. Powder Technol. 2018;339:119–29. https://doi.org/10.1016/j.powtec.2018.08.003.

    Article  CAS  Google Scholar 

  14. Hussain T, Khan F, Ansari AA, Chaturvedi P, Yahya SM. Performance improvement of vapour compression refrigeration system using Al2O3 nanofluid. IOP Conf Ser. 2018;377:012155. https://doi.org/10.1088/1757-899X/377/1/012155.

    Article  Google Scholar 

  15. Shareef DAS, Azziz DHN, Hadi HS. Experimental Study: The effects of using nano-lubrication on the performance of refrigeration systems. IOP Conf Ser. 2018;433:012052. https://doi.org/10.1088/1757-899X/433/1/012052.

    Article  Google Scholar 

  16. Ahmed MS, Hady MRA, Abdallah G. Experimental investigation on the performance of chilled-water air conditioning unit using alumina nanofluids. Therm Sci Eng Prog. 2018;5:589–96. https://doi.org/10.1016/j.tsep.2017.07.002.

    Article  Google Scholar 

  17. Zawawi NNM, Azmi WH, Redhwan AAM, Sharif MZ, Sharma KV. Thermo-physical properties of Al2O3-SiO2/PAG composite nanolubricant for refrigeration system. Int J Refrig. 2017;80:1–10. https://doi.org/10.1016/j.ijrefrig.2017.04.024.

    Article  CAS  Google Scholar 

  18. Redhwan AAM, Azmi WH, Sharif MZ, Mamat R, Samykano M, Najafi G. Performance improvement in mobile air conditioning system using Al2O3/PAG nanolubricant. J Therm Anal Calorim. 2019;135(2):1299–310. https://doi.org/10.1007/s10973-018-7656-2.

    Article  CAS  Google Scholar 

  19. Soliman AMA, Rahman AKA, Ookawara S. Enhancement of vapor compression cycle performance using nanofluids: experimental results. J Therm Anal Calorim. 2019;135(2):1507–20. https://doi.org/10.1007/s10973-018-7623-y.

    Article  CAS  Google Scholar 

  20. Ahmed MS, Elsaid AM. Effect of hybrid and single nanofluids on the performance characteristics of chilled water air conditioning system. Appl Therm Eng. 2019;163:114398. https://doi.org/10.1016/j.applthermaleng.2019.114398.

    Article  CAS  Google Scholar 

  21. Raghu A, Ram SRK, Manzoor H. Experimental investigation on vcr system using nano-refrigerant for cop enhancement. Chem Eng Trans. 2018;71:967–72. https://doi.org/10.3303/CET1871162.

    Article  Google Scholar 

  22. Khalifa AH. Comparative study for heat transfer enhancement and energy saving in hvac system using nanoparticles. J Appl Sci. 2019;2:13.

    Google Scholar 

  23. Ahmadpour MM, Behabadi MAA. Experimental investigation of heat transfer during flow condensation of HC-R600a based nano-refrigerant inside a horizontal U-shaped tube. Int J Therm Sci. 2019;146:106110. https://doi.org/10.1016/j.ijthermalsci.2019.106110.

    Article  CAS  Google Scholar 

  24. Baskar S, Karikalan L, Shaisundaram VS, Jacob S, Venugopal S. Theoretical study and performance of vapour refrigeration system along with additive of zro2. Int J Manag Technol Eng. 2019;8:8.

    Google Scholar 

  25. Pico DFM, da Silva LRR, Schneider PS, Filho EPB. Performance evaluation of diamond nanolubricants applied to a refrigeration system. Int J Refrig. 2019;100:104–12. https://doi.org/10.1016/j.ijrefrig.2018.12.009.

    Article  CAS  Google Scholar 

  26. Hu J, Liu C, Liu L, Li Q. Thermal energy storage of R1234yf, R1234ze, R134a and R32/MOF-74 nanofluids: a molecular simulation study. Materials. 2018;11(7):1164. https://doi.org/10.3390/ma11071164.

    Article  CAS  PubMed Central  Google Scholar 

  27. Ray DR, Das DK, Vajjha RS. Experimental and numerical investigations of nanofluids performance in a compact minichannel plate heat exchanger. Int J Heat Mass Transf. 2014;71:732–46. https://doi.org/10.1016/j.ijheatmasstransfer.2013.12.072.

    Article  CAS  Google Scholar 

  28. Aprea C, Greco A, Maiorino A, Masselli C. The use of barocaloric effect for energy saving in a domestic refrigerator with ethylene-glycol based nanofluids: a numerical analysis and a comparison with a vapor compression cooler. Energy. 2020;190:116404. https://doi.org/10.1016/j.energy.2019.116404.

    Article  CAS  Google Scholar 

  29. Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. J Therm Energy Gener Transp Stor Conversat. 1998;11:151–70. https://doi.org/10.1080/08916159808946559.

    Article  CAS  Google Scholar 

  30. Xuan Y, Roetzel W. Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf. 2000;43:3701–7. https://doi.org/10.1016/S0017-9310(99)00369-5.

    Article  CAS  Google Scholar 

  31. Masoumi N, Sohrabi N, Behzadmehr A. A new model for calculating the effective viscosity of nanofluids. J Appl Phys. 2009;42:1–6. https://doi.org/10.1088/0022-3727/42/5/055501.

    Article  CAS  Google Scholar 

  32. Chon CH, Kihm KD, Lee SP, Choi SUS. Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. J Appl Phys. 2005;87:1–3. https://doi.org/10.1063/1.2093936.

    Article  CAS  Google Scholar 

  33. Kang YT, Kim HJ, Lee KI. Heat and mass transfer enhancement of binary nanofluids for H2O/LiBr falling film absorption process. Int J Refrig. 2008;31(5):850–6. https://doi.org/10.1016/j.ijrefrig.2007.10.008.

    Article  CAS  Google Scholar 

  34. Sundar LS, Sousa AC, Singh MK. Heat transfer enhancement of low volume concentration of carbon nanotube-Fe3O4/Water hybrid nanofluids in a tube with twisted tape inserts under turbulent flow. J Therm Sci Eng Appl. 2015;7(2):021015. https://doi.org/10.1115/1.4029622.

    Article  CAS  Google Scholar 

  35. Sharif MZ, Azmi WH, Redhwan AAM, Mamat R. Investigation of thermal conductivity and viscosity of Al 2 O 3/PAG nanolubricant for application in automotive air conditioning system. Int J Refrig. 2016;70:93–102. https://doi.org/10.1016/j.ijrefrig.2016.06.025.

    Article  CAS  Google Scholar 

  36. Redhwan AAM, Azmi WH, Sharif MZ, Mamat R, Zawawi NNM. Comparative study of thermo-physical properties of SiO2 and Al2O3 nanoparticles dispersed in PAG lubricant. Appl Therm Eng. 2017;116:823–32. https://doi.org/10.1016/j.applthermaleng.2017.01.108.

    Article  CAS  Google Scholar 

  37. Guzei DV, Minakov AV, Rudyak VY. On efficiency of convective heat transfer of nanofluids in laminar flow regime. Int J Heat Mass Transf. 2019;139:180–92. https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.016.

    Article  CAS  Google Scholar 

  38. Azizi M, Hosseini M, Zafarnak S, Shanbedi M, Amiri A. Experimental analysis of thermal performance in a two-phase closed thermosyphon using graphene/water nanofluid. Ind Eng Chem Res. 2013;52:10015–21. https://doi.org/10.1021/ie401543n.

    Article  CAS  Google Scholar 

  39. Ramachandran R, Ganesan K, Rajkumar MR, Asirvatham LG, Wongwises S. Comparative study of the effect of hybrid nanoparticle on the thermal performance of cylindrical screen mesh heat pipe. Int Commun Heat Mass Transf. 2016;76:294–300. https://doi.org/10.1016/j.icheatmasstransfer.2016.05.030.

    Article  CAS  Google Scholar 

  40. Grab T, Gross U, Franzke U, Buschmann MH. Operation performance of thermosyphons employing titania and gold nanofluids. Int J Therm Sci. 2014;86:352–64. https://doi.org/10.1016/j.ijthermalsci.2014.06.019.

    Article  CAS  Google Scholar 

  41. Jassim EI, Ahmed F. Experimental assessment of Al2O3 and Cu nanofluids on the performance and heat leak of double pipe heat exchanger. Heat Mass Transf. 2020;56:1845–58. https://doi.org/10.1007/s00231-020-02826-9.

    Article  CAS  Google Scholar 

  42. Jassim EI, Ahmed F, Jasem BI. Effect of mixing nano-additive with engine oil on the heat transfer performance. In: International Petroleum Technology Conference. 2020.

  43. Ahmed F. Experimental investigation of Al2O3-water nanofluid as a secondary fluid in a refrigeration system. Case Stud Therm Eng. 2021;26:101024. https://doi.org/10.1016/j.csite.2021.101024.

    Article  Google Scholar 

  44. Jassim EI, Ahmed F, Jasem B. Evaluating the influence of nanofluid type and volume fraction on the performance of heat exchanger. In: ASME International Mechanical Engineering Congress and Exposition. 2020; 84591:V011T11A042. https://doi.org/10.1115/IMECE2020-23132.

  45. Jassim EI, Ahmed F, Jasem BI. Effect of mixing nano-additive with engine oil on the heat transfer performance. In: Proceedings in the 12th international petroleum technology conference and exhibition. 2020.

  46. Alasmari FZ, Jassim EI, Ahmed F. Effect of flow rate and concentration of water/ tio2 nanofluid on the performance of heat exchanger. IOP Conf Ser. 2021;811:012019. https://doi.org/10.1088/1755-1315/811/1/012019.

    Article  Google Scholar 

  47. Jassim EI, Ahmed F. Assessment of nanofluid on the performance and energy-environment interaction of plate-type-heat exchanger. Therm Sci Eng Progress. 2021;25:100988. https://doi.org/10.1016/j.tsep.2021.100988.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge the support and lab facilities provided by Prince Mohammad Bin Fahd University to carry out this research project.

Funding

No special funding was received for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faizan Ahmed.

Ethics declarations

Conflict of interest

The author declares no conflict of interest in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, F. Efficiency enhancement of a refrigerator integrated with auxiliary nanofluids. J Therm Anal Calorim 147, 10613–10623 (2022). https://doi.org/10.1007/s10973-022-11316-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11316-5

Keywords

Navigation