Skip to main content
Log in

Enhancing the thermal performance of diffusion absorption refrigeration system by using magnesium aluminate spinel oxide compound nanoparticles: an experimental investigation

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

This article aims to enhance the efficiency of Diffusion Absorption Refrigeration (DAR) systems which operate at low efficiency. This study experimentally investigates the effect of passive heat transfer enhancement by using various nanofluids as working fluids including ammonia/water couple with different rates of magnesium oxide aluminate spinel (MgOAl2O3) particles. The tests have been carried at the same ambient conditions to obtain reliable results. Additionally, nanofluid has been prepared and tested in two different particle concentration (1% and 2%). Adding nanoparticles to the base fluid (25% ammonia/water) can make an important positive effect in increasing heat transfer by extending surface area and heat capacity of the fluid. Experimental results showed that using nanofluid as working fluid in DAR system results in faster evaporation which decreases operation time and increases heat transfer in generator. Moreover, the DAR system containing 2% concentration of nanofluid solution led to a 37.4% increase in performance coefficient (COP) and a 44.2% increase in exergetic performance coefficient (ECOP) compared to the DAR system without nano particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

Cp :

specific heat capacity (J kg−1 K−1)

h :

specific enthalpy (kJ kg−1)

\( \dot{m} \) :

mass flow rate (kgs−1)

p:

pressure (bar)

q h :

power of generator (W)

q rf :

heat transported from rectifier (W)

\( \dot{\mathrm{Q}} \) :

heat exchanged (W)

T:

temperature (°C)

WR :

total uncertainty (%)

w1, w2, wn :

uncertainties in the independent variables

x :

mass fraction of the solution (−)

\( \mathsf{evap} \) :

Evaporator

\( \mathsf{h} \) :

Heater

\( \mathrm{g}-\mathrm{v} \) :

generator-vapor

g − w:

generator-water (water by weak solution)

\( \mathsf{o} \) :

ambient

\( \mathsf{rf} \) :

Rectifier

rf − w:

rectifier-water (water by solution)

\( \mathsf{rf}-\mathsf{v} \) :

rectifier-vapor

1, 2, 4a…:

system’s point designation.

\( \mathsf{CFCs} \) :

Chlorofluorocarbons

COP:

Coefficient of Performance

DAR:

Diffusion Absorption Refrigeration

\( \mathsf{DMAC} \) :

Dimethylacetamide

ECOP:

Exergetic Coefficient of Performance

HCFCs:

Hydro Chloro Fluoro Carbons

\( \mathsf{He} \) :

Helium

MgOAl2O3 :

Magnesium oxide aluminate spinel

SDBS:

Sodium Dodecyl Benzene Sulfonate

SHE:

Solution Heat Exchanger

References

  1. Von Platen BC, Munters CG (1928) Refrigerator. US Patent 1:685–764

    Google Scholar 

  2. Pérez-García V, Rodríguez-Muñoz JL, Belman-Flores JM, Rubio-Maya C, Ramírez-Minguela JJ (2019) Theoretical modeling and experimental validation of a small capacity diffusion-absorption refrigerator. Int J Refrig 104:302–310

    Article  Google Scholar 

  3. Chaves FD, Moreira MFS, Koury RN, Machado L, Cortez MFB (2019) Experimental study and modeling within validation of a diffusion absorption refrigerator. Int J Refrig 101:136–147

    Article  Google Scholar 

  4. Hassan HZ, Mohamad AA (2012) A review on solar cold production through absorption technology. Renew Sust Energ Rev 16:5331–5348

    Article  Google Scholar 

  5. Gutierrez F (1998) Behaviour of a household absorbtion-diffusion refrigator adapted the autonomous solar operation. Sol Energy 40:17–23

    Article  Google Scholar 

  6. Rattner AS, Garimella S (2016a) Low-source-temperature diffusion absorption refrigeration. Part I: Modeling and cycle analysis. Int J Refrigeration 65:287–311

    Article  Google Scholar 

  7. Rattner AS, Garimella S (2016b) Low-source-temperature diffusion absorption refrigeration. Part II: Experiments and model assessment. Int J Refrigeration 65:312–329

    Article  Google Scholar 

  8. Sözen A, Özbaş E, Menlik T, Çakır MT, Gürü M, Boran K (2014) Improving the thermal performance of diffusion absorption refrigeration system with alumina nanofluids: an experimental study. Int J Refrig 44:73–80

    Article  Google Scholar 

  9. Chen J, Kim JK, Herold KE (1996) Performance enhancement of a diffusion absorption refrigerator. Int J Refrig 19:208–218

    Article  Google Scholar 

  10. Zohar A, Jelinek M, Levy A, Borde I (2008) The influence of the generator and bubble pump configuration on the performance of diffusion absorption refrigeration (DAR) system. Int J Refrig 31:962–969

    Article  Google Scholar 

  11. Zohar A, Jelinek M, Levy A, Borde I (2007) The influence of diffusion absorption refrigeration cycle configuration on the performance. Appl Therm Eng 27:2213–2219

    Article  Google Scholar 

  12. Srikhirin P, Aphornratana S (2002) Investigation of a diffusion absorption refrigeration. Appl Therm Eng 22:1181–1193

    Article  Google Scholar 

  13. Starece G, De Pascalis L (2012) An advanced analytical model of the diffusion absorption refrigation cycle. Int J Refrig 32:605–612

    Article  Google Scholar 

  14. Starace G, De Pascalis L (2013) An enhanced model for the design of diffusion absorption refrigerators. Int J Refrig 36:1495–1503

    Article  Google Scholar 

  15. Belman-Flores JM, Rodríguez-Muñoz JL, Rubio-Maya C, Ramírez-Minguela JJ, Pérez-García V (2014) Energetic analysis of a diffusion–absorption system: a bubble pump under geometrical and operational conditions effects. Appl Therm Eng 71:1–10

    Article  Google Scholar 

  16. Wang SK, Wang J, Wang Q, Wang YL, Chen GM (2017) Experimental research on the performance of the diffusion absorption refrigerator with mixed fluoride refrigerants. Int J Refrig 81:50–59

    Article  Google Scholar 

  17. Acuña A, Velazquez N, Cerezo J (2013) Energy analysis of a diffusion absorption cooling system using lithiumnitrate, sodiumthiocyanate and water as absorbent substance and ammonia as the refrigerant. Appl Therm Eng 51:1273–1281

    Article  Google Scholar 

  18. Zohar A, Jelinek M, Levy A, Borde I (2009) Performance of diffusion absorption refrigeration cycle with organic working fluids. Int J Refrig 32:1241–1246

    Article  Google Scholar 

  19. Mansouri R, Borouis M, Bellagi A (2017) Experimental investigations and modelling of a small capacity diffusion-absorption refrigerator in dynamic mode. Appl Therm Eng 113:653–662

    Article  Google Scholar 

  20. Mansouri R, Borouis M, Bellagi A (2018) Steady state investigations of a commercial diffusion-absorption refrigerator: experimental study and numerical simulations. Appl Therm Eng 129:725–734

    Article  Google Scholar 

  21. Khan I, Saeed K, Khan I (2019) Nanoparticles: properties, applications and toxicities. Arab J Chem 12:908–931

    Article  Google Scholar 

  22. Gürü M, Sözen A, Karakaya U, Çiftçi E (2019) Influences of bentonite – deionized water nanofluid utilization at different concentrations on heat pipe performance: an experimental study. Appl Therm Eng 148:632–640

    Article  Google Scholar 

  23. Khanlari A, Sözen A, Variyenli Hİ (2019a) Simulation and experimental analysis ofheat transfer characteristics in the plate type heat exchangers using TiO2/waternanofluid. Int J Numerical Methods Heat & Fluid Flow 29:1343–1362

    Article  Google Scholar 

  24. Sanukrishna SS, Murukan M, Prakash MJ (2018) An overview of experimental studies on nanorefrigerants: recent research, development and applications. Int J Refrigeration 88:552–577. https://doi.org/10.1016/j.ijrefrig.2018.03.013

  25. Khanlari A, Sözen A, Variyenli Hİ, Gürü M (2019b) Comparison between heat transfer characteristics of TiO2/deionized water and kaolin/deionized water nanofluids in the plate heat exchanger. Heat Transfer Res 50:435–450

    Article  Google Scholar 

  26. Khanlari A, Yılmaz Aydın D, Sözen A, Gürü M, Variyenli Hİ (2020) Investigation of the influences of kaolin-deionized water nanofluid on the thermal behavior of concentric type heat exchanger. Heat Mass Transf. https://doi.org/10.1007/s00231-019-02764-1

  27. Aman J, Henshaw P, Ting DS-K (2018) Performance characterization of a bubble pump for vapor absorption refrigeration systems. Int J Refrig 85:58–69

    Article  Google Scholar 

  28. Jemaa RB, Mansouri R, Bellagi A (2016) Dynamic testing and modeling of a diffusion absorption refrigeration system. Int J Refrig 67:249–258

    Article  Google Scholar 

  29. Wu W, Wu J, Wang Y, Zhang H (2017) The enhancing influence of nanoparticles on ammonia/water falling film absorption in binary nanofluids under pressure reducing conditions. J Thermal Sci Technol 12:JTST0018

    Article  Google Scholar 

  30. Yang L, Du K, Bao S, Wu Y (2012) Investigations of selection of nanofluid applied to the ammonia absorption refrigeration system. Int J Refrig 35:2248–2260

    Article  Google Scholar 

  31. Jiang W, Li S, Yang L, Du K (2019) Experimental investigation on performance of ammonia absorption refrigeration system with TiO2 nanofluid. Int J Refrig 98:80–88

    Article  Google Scholar 

  32. Amaris C, Bourouis M, Vallès M (2014) Passive intensification of the ammonia absorption process with NH3/LiNO3 using carbon nanotubes and advanced surfaces in a tubular bubble absorber. Energy 68:519–528

    Article  Google Scholar 

  33. Kline SJ, McClintock FA (1953) Describing uncertainties in single-sample experiments. Mech Eng 75:3–8

    Google Scholar 

  34. Nanografi Nanotechnology AS.: https://nanografi.com/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emine Yağız Gürbüz.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sözen, A., Keçebaş, A. & Gürbüz, E.Y. Enhancing the thermal performance of diffusion absorption refrigeration system by using magnesium aluminate spinel oxide compound nanoparticles: an experimental investigation. Heat Mass Transfer 57, 1583–1592 (2021). https://doi.org/10.1007/s00231-021-03046-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-021-03046-5

Keywords

Navigation