Skip to main content
Log in

Experimental investigation of the macroscopic characteristic parameters and microstructure of water-soaked coal during low-temperature oxidation

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

When a shallow-buried close-distance coal seam group is mined, the residual coal in the goaf of the upper coal seam is immersed in water for a prolonged period of time, increasing the risk of coal spontaneous combustion (CSC). In this study, the macroscopic characteristics of water-soaked coal (WSC) during low-temperature oxidation were analyzed using a temperature-programmed device. The microstructure changes at different oxidation temperatures (40, 80, 120, 160, and 200 °C) were investigated through liquid nitrogen adsorption and X-ray diffraction. The results revealed that, during low-temperature oxidation, macroscopic characteristic parameters such as the oxidation gas product concentration, temperature, and oxygen consumption rate of WSC changed, indicating higher oxidizability and lower apparent activation energy. The average pore size and macropore volume of the coal surface gradually increased during low-temperature oxidation. The mesopore volume increased at first and then tended to stabilize. The mineral content on the surface of the coal markedly diminished, but the mineral content did not participate in the oxidation process. Water leaching enhanced the interlayer spacing of the aromatic lamellae of the coal samples, curtailed the degree of coalification, and condensed the aromatic ring of the coal sample during the oxidation process. This analysis of the oxidation and macroscopic characteristics of WSC from micro- and macroperspectives is valuable for the prevention and containment of CSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Deng J, Zhao JY, Huang AC, Zhang YN, Wang CP, Shu CM. Thermal behavior and microcharacterization analysis of second-oxidized coal. J Therm Anal Calorim. 2017;127(1):439–48. https://doi.org/10.1007/s10973-016-5493-8.

    Article  CAS  Google Scholar 

  2. Li B, Liu G, Gao W, Cong HY, Bi MS, Ma L, et al. Study of combustion behaviour and kinetics modelling of Chinese Gongwusu coal gangue: Model-fitting and model-free approaches. Fuel. 2020;268:117284. https://doi.org/10.1016/j.fuel.2020.117284.

    Article  CAS  Google Scholar 

  3. Wang CP, Deng Y, Zhang YT, Xiao Y, Deng J, Shu CM. Coal oxidation characteristics and index gases of spontaneous combustion during the heating and cooling processes. Fuel. 2022;307:121806. https://doi.org/10.1016/j.fuel.2021.121806.

    Article  CAS  Google Scholar 

  4. Deng J, Bai ZJ, Xiao Y, Shu CM, Laiwang B. Effects of imidazole ionic liquid on macroparameters and microstructure of bituminous coal during low-temperature oxidation. Fuel. 2019;246:160–8. https://doi.org/10.1016/j.fuel.2019.02.066.

    Article  CAS  Google Scholar 

  5. Zhai XW, Ge H, Wang TY, Shu CM, Li J. Effect of water immersion on active functional groups and characteristic temperatures of bituminous coal. Energy. 2020. https://doi.org/10.1016/j.energy.2020.118076.

    Article  Google Scholar 

  6. Song S, Qin BT, Xin HH, Qin XW, Chen K. Exploring effect of water immersion on the structure and low-temperature oxidation of coal: a case study of Shendong long flame coal. China Fuel. 2018;234:732–7. https://doi.org/10.1016/j.fuel.2018.07.074.

    Article  CAS  Google Scholar 

  7. Yang YL, Li ZH, Si LL, Gu FJ, Zhou YB, Qi QQ, et al. Study governing the impact of long-term water immersion on coal spontaneous ignition. Arab J Sci Eng. 2017;42(4):1359–69. https://doi.org/10.1007/s13369-016-2245-9.

    Article  CAS  Google Scholar 

  8. Zha XW, Pan WJ, Wu SB, Ge H. Laboratory experimental study on water-soaked-dried bituminous coal’s thermal properties. J Therm Anal Calorim. 2020;139:3691–700. https://doi.org/10.1007/s10973-019-08769-6.

    Article  CAS  Google Scholar 

  9. Sun LL, Zhang YB, Wang Y, Liu QQ. Study on the reoxidation characteristics of soaked and air–dried coal. J Energ Resour Technol. 2018;141(2):022203. https://doi.org/10.1115/1.4041407.

    Article  CAS  Google Scholar 

  10. Xu YL, Bu YC, Chen ML, Wang LY. Effect of water-immersion and air-drying period on spontaneous combustion characteristics for long-flame coal. Combust Sci Technol. 2020;1(5):1–16. https://doi.org/10.1080/00102202.2020.1788007.

    Article  CAS  Google Scholar 

  11. Wang CP, Yang NN, Xiao Y, Bai ZJ, Deng J, Shu CM. Effects of moisture and associated pyrite on the microstructure of anthracite coal for spontaneous combustion. ACS Omega. 2020;5(42):27607–17. https://doi.org/10.1021/acsomega.0c04161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fry R, Day S, Sakurovs R. Moisture-induced swelling of coal. Int J Coal Prep Util. 2009;29(6):298–316. https://doi.org/10.1080/19392690903584575.

    Article  CAS  Google Scholar 

  13. Nakagawa H, Namba A, Böhlmann M, Miura K. Hydrothermal dewatering of brown coal and catalytic hydrothermal gasification of the organic compounds dissolving in the water using a novel Ni/carbon catalyst. Fuel. 2004;83(6):719–25. https://doi.org/10.1016/j.fuel.2003.09.020.

    Article  CAS  Google Scholar 

  14. Yu J, Tahmasebi A, Han Y, Yin F, Li X. A review on water in low rank coals: the existence, interaction with coal structure and effects on coal utilization. Fuel Process Technol. 2013;106(2):9–20. https://doi.org/10.1016/j.fuproc.2012.09.051.

    Article  CAS  Google Scholar 

  15. Deevi SC, Suuberg EM. Physical changes accompanying drying of western US lignites. Fuel. 1987;66(4):454–60. https://doi.org/10.1016/0016-2361(87)90147-5.

    Article  CAS  Google Scholar 

  16. Suuberg EM, Otake Y, Yun Y, Deevi SC. Role of moisture in coal structure and the effects of drying upon the accessibility of coal structure. Energ Fuel. 1993;7(3):384–92. https://doi.org/10.1021/ef00039a009.

    Article  CAS  Google Scholar 

  17. Li B, Ren YJ, Lv XQ. The evolution of thermal conductivity and pore structure for coal under liquid nitrogen soaking. Civ Eng Adv. 2020. https://doi.org/10.1155/2020/2748092.

    Article  Google Scholar 

  18. Sakurovs R, Lewis C, Wibberley L. Effect of heat and moisture on surface titratability and pore size distribution of Victorian brown coals. Fuel. 2016;172:124–9. https://doi.org/10.1016/j.fuel.2016.01.004.

    Article  CAS  Google Scholar 

  19. Wu Y, Zhang Y, Wang J, Zhang X, Wang J, Zhou C. Study on the effect of extraneous moisture on the spontaneous combustion of coal and Its mechanism of action. Energies. 2020;13(8):1969. https://doi.org/10.3390/en13081969.

    Article  CAS  Google Scholar 

  20. Bai ZJ, Wang CP, Deng J, Kang FR, Shu CM. Effects of ionic liquids on the chemical structure and exothermic properties of lignite. J Mol Liq. 2020. https://doi.org/10.1016/j.molliq.2020.113019.

    Article  Google Scholar 

  21. Yin L, Xiao Y, Zhong KQ, Shu CM, Tian Y. Temperature effects on thermal diffusivity of bituminous coal using different pre-oxidation levels in a nitrogenous atmosphere. Fuel. 2021. https://doi.org/10.1016/j.fuel.2020.119640.

    Article  Google Scholar 

  22. Wen G, Yang S, Liu Y, Wu W, Sun D, Wang K. Influence of water soaking on swelling and microcharacteristics of coal. Energy Sci Eng. 2020;8(1):50–60. https://doi.org/10.1002/ese3.508.

    Article  Google Scholar 

  23. Kücük A, Kadıoğlu Y, Gülaboğlu MŞ. A study of spontaneous combustion characteristics of a Turkish lignite: particle size, moisture of coal, humidity of air. Combust Flame. 2003;133(3):255–61. https://doi.org/10.1016/S0010-2180(02)00553-9.

    Article  CAS  Google Scholar 

  24. Cai JW, Yang SQ, Hu XC, Song WX, Xu Q, Zhou BZ, et al. Forecast of coal spontaneous combustion based on the variations of functional groups and microcrystalline structure during low-temperature oxidation. Fuel. 2019;253:339–48. https://doi.org/10.1016/j.fuel.2019.05.040.

    Article  CAS  Google Scholar 

  25. Xu JC. Determination theory of coal spontaneous combustion zone. China Coal Industry Publishing House, Beijing, China. 2001(in Chinese).

  26. Deng J, Chen WL, Liang C, Wang WF, Xiao Y, Wang CP, et al. Correction model for co detection in the coal combustion loss process in mines based on gwo-svm. J. Loss Prev. Process Industries. 2021;71:104439. https://doi.org/10.1016/j.jlp.2021.104439.

    Article  CAS  Google Scholar 

  27. Huang ZA, Li JY, Gao YK, Shao ZL, Zhang YH. Thermal behavior and microscopic characteristics of WSC spontaneous combustion. Combust Sci Technol. 2020;6:1–19. https://doi.org/10.1080/00102202.2020.1777993.

    Article  CAS  Google Scholar 

  28. Cui CB, Jiang SG, Zhang WQ. Influence of different concentrations of ionic solutions on coal spontaneous combustion. Combust Sci Technol. 2018;190:1817–31. https://doi.org/10.1080/00102202.2018.1473860.

    Article  CAS  Google Scholar 

  29. Zhou CS, Zhang YL, Wang JF, Xue S, Wu JM. Study on the relationship between microscopic functional group and coal mass changes during low-temperature oxidation of coal. Int J Coal Geol. 2017;171:212–22. https://doi.org/10.1016/j.coal.2017.01.013.

    Article  CAS  Google Scholar 

  30. Chen XX, Shan WX, Sun RB, Zhang L. Methane displacement characteristic of coal and its pore change in water injection. Energ Explor Exploit. 2020;38:1647–63. https://doi.org/10.1177/0144598720934052.

    Article  CAS  Google Scholar 

  31. Sing KSW. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem. 1985;57(4):603–19. https://doi.org/10.1351/pac198557040603.

    Article  CAS  Google Scholar 

  32. Yang YL, Li ZH, Tang YB, Ji HJ, Liu Z. Soluble organic matter affecting low temperature oxidation of coal with different ranks. Asian J Chem. 2014;26:2487–92. https://doi.org/10.14233/ajchem.2014.16687.

    Article  CAS  Google Scholar 

  33. Zheng QM, Liu QF, Wu ZG, Zhang YM, Shi SL. Ammonium-illite smectite interlayer clay minerals in coal-bearing strata in Jincheng district of Shanxi Province. J China Coal Soc. 2012;37(2):231–6.

    CAS  Google Scholar 

  34. Norinaga K, Hayashi JI, Kudo N, Chiba T. Evaluation of effect of predrying on the porous structure of water-swollen coal based on the freezing property of pore condensed water. Energ Fuel. 1999;13(5):1058–66. https://doi.org/10.1021/ef990024v.

    Article  CAS  Google Scholar 

  35. Chen M, Zhang SY, Li Y, Li H, Wu SY, Huang XH. Evolution of microstructure and combustion reactivity of lignite during high-temperature drying process. Dry Technol. 2018;36(10):1170–8. https://doi.org/10.1080/07373937.2017.1390477.

    Article  CAS  Google Scholar 

  36. Li ZH, Wei AZ, Yang YL. Research on free radical reactions in spontaneous combustion of coal using an electron spin resonance. J China U Min Technol. 2006;35(5):576–80. https://doi.org/10.1093/carcin/bgm010.

    Article  Google Scholar 

  37. Pilawa B, Więckowski A, Pietrzak R, Wachowska H. Oxidation of demineralized coal and coal free of pyrite examined by EPR spectroscopy. Fuel. 2002;81(15):1925–31. https://doi.org/10.1016/S0016-2361(02)00131-X.

    Article  CAS  Google Scholar 

  38. Yu S, Jiang B, Liu JG. Nanopore structural characteristics and their impact on methane adsorption and diffusion in low to medium tectonically deformed coals: case study in the Huaibei coal field. Energ Fuel. 2017;31(7):6711–23. https://doi.org/10.1021/acs.energyfuels.7b00512.

    Article  CAS  Google Scholar 

  39. Choi H, Thiruppathiraja C, Kim S, Rhim Y, Lim J, Lee S. Moisture readsorption and low temperature oxidation characteristics of upgraded low rank coal. Fuel Process Technol. 2011;92(10):2005–10. https://doi.org/10.1016/j.fuproc.2011.05.025.

    Article  CAS  Google Scholar 

  40. Vorres KS, Wertz DL, Malhotra V, Dang Y, Joseph JT, Fisher R. Drying of Beulah-Zap lignite. Fuel. 1992;71(9):1047–53. https://doi.org/10.1016/0016-2361(92)90113-3.

    Article  CAS  Google Scholar 

  41. Takagi H, Maruyama K, Yoshizawa N, Yamada Y, Sato Y. XRD analysis of carbon stacking structure in coal during heat treatment. Fuel. 2004;83(17/18):2427–33. https://doi.org/10.1016/j.fuel.2004.06.019.

    Article  CAS  Google Scholar 

  42. Li KJ, Khanna R, Zhang JL, Barati M, Liu ZJ, Xu T, et al. Comprehensive investigation of various structural features of bituminous coals using advanced analytical techniques. Energ Fuel. 2015;29(11):7178–89. https://doi.org/10.1021/acs.energyfuels.5b02064.

    Article  CAS  Google Scholar 

  43. Wang Y, Zhang Y, Zhou Q, Zhang Y, Sun J. Thermal kinetics analysis of coal-gangue selected from Inner Mongolia in China. J Therm Anal Calorim. 2018;131(2):1835–43. https://doi.org/10.1007/s10973-017-6642-4.

    Article  CAS  Google Scholar 

  44. Sonibare OO, Haeger T, Foley SF. Structural characterization of Nigerian coals by X-ray diffraction Raman and FTIR spectroscopy. Energy. 2010;35(12):5347–53. https://doi.org/10.1016/j.energy.2010.07.025.

    Article  CAS  Google Scholar 

  45. Liu H, Jiang WB, Liu JG, Song Y. The evolutionary characteristics and mechanisms of coal chemical structure in micro deformed domains under sub-high temperatures and high pressures. Fuel. 2018;222:258–68. https://doi.org/10.1016/j.fuel.2018.02.117.

    Article  CAS  Google Scholar 

  46. Shi QL, Qin BT, Bi Q, Qu B. An experimental study on the effect of igneous intrusions on chemical structure and combustion characteristics of coal in Daxing Mine. China Fuel. 2018;226:307–15. https://doi.org/10.1016/j.fuel.2018.04.027.

    Article  CAS  Google Scholar 

  47. Bai ZJ, Wang CP, Deng J, Kang FR, Shu SM. Experimental investigation on using ionic liquid to control spontaneous combustion of lignite. Process Saf. Environ. Prot. 2020;142:138–49. https://doi.org/10.1016/j.psep.2020.06.017.

    Article  CAS  Google Scholar 

  48. Lei ZP, Wu L, Zhang YQ, Shui HF, Wang ZC, Ren SB. Effect of noncovalent bonds on the successive sequential extraction of Xianfeng lignite. Fuel Process Technol. 2013;111:118–22. https://doi.org/10.1016/j.fuproc.2013.02.004.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by National Natural Science Foundation of China (Nos. 51774232 and 51974234), Shaanxi International Science and Technology Cooperation Project (No. 2020KW-026), Scientific Research Projects of Sichuan Provincial Department of Science and Technology (2021SCLL02), and Luzhou Science and Technology Planning Project (No. 2021-SYF-42). The authors also gratefully acknowledge Key Laboratory of Coal Fire and Hazard Prevention in Shaanxi Province, China.

Author information

Authors and Affiliations

Authors

Contributions

Yong-Jun He contributed to writing—original draft. Jun Deng and Xiao-Wei Zhai contributed to funding acquisition, supervision, and investigation. Zu-Jin Bai and Yang Xiao contributed to supervision and investigation. Chi-Min Shu contributed to supervision.

Corresponding authors

Correspondence to Yong-Jun He or Jun Deng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, YJ., Deng, J., Zhai, XW. et al. Experimental investigation of the macroscopic characteristic parameters and microstructure of water-soaked coal during low-temperature oxidation. J Therm Anal Calorim 147, 9711–9723 (2022). https://doi.org/10.1007/s10973-022-11243-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11243-5

Keywords

Navigation