Skip to main content
Log in

Evaluating the efficiency of pin–fin micro-heat sink considering different shapes of nanoparticle based on exergy analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this paper, the exergy rate analysis at a pin–fin micro-heat sink (MH/S) is investigated numerically. The critical part of a MH/S contains several square-shaped pin–fins. A turbulent flow of water/boehmite alumina nanofluid (N-F) moves on the pin–fins and cools the MH/S. Constant heat flux is entered into the lower part of the pin–fin MH/S. The governing equations are solved based on the control volume method and simple algorithm. The K-epsilon model is applied to model the N-F flow over pin–fins. The first-law, second-law efficiencies, gains exergy rate, loss exergy rate, and output exergy rate are studied in analysis. Variables considered in the problem consist of the inlet flow rate of N-F, N-Ps shape, and volume fraction of N-Ps in water. The main purpose of this paper is to investigate the exergy rate of various N-P shapes in a MH/S. The results of this study showed that increasing the flow rate reduces the temperature of the MH/S. Increasing the velocity and volume percentage reduces the amount of out exergy rate. In fact, by increasing the velocity from 1 to 3 m s−1 for water, the amount of out exergy rate output decreases by 7.36 W. The greatest reduction in loss exergy rate is for platelets N-Ps with a reduction of 441 W. Also, increasing the velocity and decreasing the volume percentage reduce the efficiency of the first law of thermodynamics, which is 8.5% for platelets N-Ps. The addition of these N-Ps reduces the efficiency of the second law by 5.7%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Alihosseini Y, Zabetian Targhi M, Heyhat MM, Ghorbani N. Effect of a micro heat sink geometric design on thermo-hydraulic performance: a review. Appl Therm Eng. 2020;170:114974.

    Google Scholar 

  2. Ahmed HE, Salman BH, Kherbeet AS, Ahmed MI. Optimization of thermal design of heat sinks: a review. Int J Heat Mass Transfer. 2018;118:129–53.

    Article  Google Scholar 

  3. Elghool A, Basrawi F, Ibrahim TK, Habib K, Ibrahim H, Idris DMND. A review on heat sink for thermo-electric power generation: classifications and parameters affecting performance. Energy Convers Manag. 2017;134:260–77.

    Article  Google Scholar 

  4. Chingulpitak S, Wongwises S. A review of the effect of flow directions and behaviors on the thermal performance of conventional heat sinks. Int J Heat Mass Transfer. 2015;81:10–8.

    Article  Google Scholar 

  5. Saifi H, Sari MR, Kezzar M, Ghazvini M, Sharifpur M, Sadeghzadeh M. Heat transfer through converging-diverging channels using Adomian decomposition method. Eng Appl Comput Fluid Mech. 2020;14(1):1373–84.

    Google Scholar 

  6. Kharangate CR, Libeer W, Palko J, Lee H, Shi J, Asheghi M, Goodson KE. Investigation of 3D manifold architecture heat sinks in air-cooled condensers. Appl Therm Eng. 2020;167:114700.

    Article  Google Scholar 

  7. Chu W-X, Tsai M-K, Jan S-Y, Huang H-H, Wang C-C. CFD analysis and experimental verification on a new type of air-cooled heat sink for reducing maximum junction temperature. Int J Heat Mass Transfer. 2020;148:119094.

    Article  Google Scholar 

  8. Sokhal GS, Dhindsa GS, Sokhal KS, Ghazvini M, Sharifpur M & Sadeghzadeh M. Experimental investigation of heat transfer and exergy loss in heat exchanger with air bubble injection technique. J Therm Anal Calorim. 2020;1–11.

  9. Yeom T, Huang L, Zhang M, Simon T, Cui T. Heat transfer enhancement of air-cooled heat sink channel using a piezoelectric synthetic jet array. Int J Heat Mass Transfer. 2019;143:118484.

    Article  Google Scholar 

  10. Kleiner MB, Kuhn SA, Haberger K. High performance forced air cooling scheme employing microchannel heat exchangers. IEEE Trans Compon Packag Manuf Technol. 1995;18(4):795–804.

    Article  Google Scholar 

  11. Lelea D. The tangential micro-heat sink with multiple fluid inlets. Int Commun Heat Mass Transfer. 2012;39(2):190–5.

    Article  Google Scholar 

  12. Li Z, He Y-L, Tang G-H, Tao W-Q. Experimental and numerical studies of liquid flow and heat transfer in microtubes. Int J Heat Mass Transfer. 2007;50(17):3447–60.

    Article  CAS  Google Scholar 

  13. Qu W, Mudawar I. Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink. Int J Heat Mass Transfer. 2002;45(12):2549–65.

    Article  CAS  Google Scholar 

  14. Leela Vinodhan V, Rajan KS. Computational analysis of new microchannel heat sink configurations. Energy Convers Manag. 2014;86:595–604.

    Article  Google Scholar 

  15. Zargartalebi M, Azaiez J. Effects of nanoparticle adsorption on heat transfer in random pin-based microchannel heat sinks. Int J Heat Mass Transfer. 2019;130:420–30.

    Article  CAS  Google Scholar 

  16. Afrand M, Pordanjani AH, Aghakhani S, Oztop HF, Abu-Hamdeh N. Free convection and entropy generation of a nanofluid in a tilted triangular cavity exposed to a magnetic field with sinusoidal wall temperature distribution considering radiation effects. Int Commun Heat Mass Transfer. 2020;112:104507.

    Article  CAS  Google Scholar 

  17. Aghakhani S, Ghasemi B, Hajatzadeh Pordanjani A, Wongwises S, Afrand M. Effect of replacing nanofluid instead of water on heat transfer in a channel with extended surfaces under a magnetic field. Int J Numer Methods Heat Fluid Flow. 2019.

  18. Aghakhani S, Pordanjani AH, Afrand M, Sharifpur M, Meyer JP. Natural convective heat transfer and entropy generation of alumina/water nanofluid in a tilted enclosure with an elliptic constant temperature: Applying magnetic field and radiation effects. Int J Mech Sci. 2020;174:105470.

    Article  Google Scholar 

  19. Giwa SO, Sharifpur M, Ahmadi MH, and Meyer JP. Magnetohydrodynamic convection behaviours of nanofluids in non-square enclosures: a comprehensive review. Math Methods Appl Sci. 2020; 1– 59.

  20. Giwa SO, Sharifpur M, Ahmadi MH, SohelMurshed SM, Meyer JP. Experimental Investigation on stability, viscosity, and electrical conductivity of water-based hybrid nanofluid of MWCNT-Fe2O3. Nanomaterials. 2021;11(1):136.

    Article  CAS  PubMed Central  Google Scholar 

  21. El Haj Assad M, Alhuyi Nazari M. Chapter 3 - Heat exchangers and nanofluids. In: Assad MEH, Rosen MA, editors. Design and performance optimization of renewable energy systems. Academic Press; 2021. p. 33–42.

    Chapter  Google Scholar 

  22. Rostami S, Aghakhani S, Hajatzadeh Pordanjani A, Afrand M, Cheraghian G, Oztop HF, Shadloo MS. A review on the control parameters of natural convection in different shaped cavities with and without nanofluid. Processes. 2020;8(9):1011.

    Article  CAS  Google Scholar 

  23. Yan S-R, Aghakhani S, Karimipour A. Influence of a membrane on nanofluid heat transfer and irreversibilities inside a cavity with two constant-temperature semicircular sources on the lower wall: applicable to solar collectors. Phys Scr. 2020;95(8):085702.

    Article  CAS  Google Scholar 

  24. Zheng Y, Yaghoubi S, Dezfulizadeh A, Aghakhani S, Karimipour A, Tlili I. Free convection/radiation and entropy generation analyses for nanofluid of inclined square enclosure with uniform magnetic field. J Therm Anal Calorim. 2020;141(1):635–48.

    Article  CAS  Google Scholar 

  25. Menni Y, Ghazvini M, Ameur H, Kim M, Ahmadi MH & Sharifpur M. Combination of baffling technique and high-thermal conductivity fluids to enhance the overall performances of solar channels. Eng Comput. 2020.

  26. Mahdavi M, Sharifpur M, Ahmadi MH, Meyer JP. Nanofluid flow and shear layers between two parallel plates: a simulation approach. Eng Appl Comput Fluid Mech. 2020;14(1):1536–45.

    Google Scholar 

  27. Mahdavi M, Garbadeen I, Sharifpur M, Ahmadi MH, Meyer JP. Study of particle migration and deposition in mixed convective pipe flow of nanofluids at different inclination angles. J Therm Anal Calorim. 2019;135(2):1563–75.

    Article  CAS  Google Scholar 

  28. Mostafa Mahdavi M, Sharifpur M, Ahmadi MH, Meyer JP. Aggregation study of Brownian nanoparticles in convective phenomena. Therm Anal Calorim. 2019;135(1):111–21.

    Article  Google Scholar 

  29. Komeilibirjandi A, Raffiee AH, Maleki A, Nazari MA, Shadloo MS. Thermal conductivity prediction of nanofluids containing CuO nanoparticles by using correlation and artificial neural network. J Therm Anal Calorim. 2020;139:2679–89.

    Article  CAS  Google Scholar 

  30. Ghalandari M, Maleki A, Haghighi A, Shadloo MS, Nazari MA, and Tlili I. Applications of nanofluids containing carbon nanotubes in solar energy systems: a review. J Mol Liq. 2020; 113476.

  31. Tian M-W, Rostami S, Aghakhani S, Goldanlou AS, Qi C. A techno-economic investigation of 2D and 3D configurations of fins and their effects on heat sink efficiency of MHD hybrid nanofluid with slip and non-slip flow. Int J Mech Sci. 2021;189:105975.

    Article  Google Scholar 

  32. Wang N, Maleki A, Alhuyi Nazari M, Tlili I, Safdari Shadloo M. Thermal conductivity modeling of nanofluids contain MgO particles by employing different approaches. Symmetry. 2020;12:206.

    Article  CAS  Google Scholar 

  33. Irandoost Shahrestani M, Maleki A, Safdari Shadloo M, Tlili I. Numerical investigation of forced convective heat transfer and performance evaluation criterion of Al2O3/water nanofluid flow inside an axisymmetric microchannel. Symmetry. 2020;12:120.

    Article  Google Scholar 

  34. Cheraghian G, Hemmati M, Bazgir S. Application of TiO2 and fumed silica nanoparticles and improve the performance of drilling fluids. In: AIP conference proceedings. 2014; 1590(1):266-270. American Institute of Physics.

  35. Cheraghian G, Hendraningrat L. A review on applications of nanotechnology in the enhanced oil recovery part A: effects of nanoparticles on interfacial tension. Int Nano Lett. 2016;6(2):129–38.

    Article  Google Scholar 

  36. Cheraghian G, and Wistuba M. Ultraviolet aging study on bitumen modified by a composite of clay and fumed silica nanoparticles.

  37. Izadi M, El Haj Assad M. Chapter 15 - Use of nanofluids in solar energy systems. In: Assad MEH, Rosen MA, editors. Design and Performance optimization of renewable energy systems. Academic Press; 2021. p. 221–50.

    Chapter  Google Scholar 

  38. Maddah H, Aghayari R, Mirzaee M, Ahmadi MH, Sadeghzadeh M, Chamkha AJ. Factorial experimental design for the thermal performance of a double pipe heat exchanger using Al2O3–TiO2 hybrid nanofluid. Int Commun Heat Mass Transfer. 2018;97:92–102.

    Article  CAS  Google Scholar 

  39. Nasirzadehroshenin F, Sadeghzadeh M, Khadang A, Maddah H, Ahmadi MH, Sakhaeinia H, Chen L. Modeling of heat transfer performance of carbon nanotube nanofluid in a tube with fixed wall temperature by using ANN–GA. Eur Phys J Plus. 2020;135(2):217.

    Article  CAS  Google Scholar 

  40. Pordanjani AH, Jahanbakhshi A, Nadooshan AA, Afrand M. Effect of two isothermal obstacles on the natural convection of nanofluid in the presence of magnetic field inside an enclosure with sinusoidal wall temperature distribution. Int J Heat Mass Transfer. 2018;121:565–78.

    Article  CAS  Google Scholar 

  41. Sharma KV, Kumar Vandrangi S, Snoussi L, Raja Sekhar Y, Sadeghzadeh M, Ahmadi MH. Influence of nanofluid properties on turbulent forced convection heat transfer in different base liquids.

  42. Saeed M, Kim M-H. Heat transfer enhancement using nanofluids (Al2O3–H2O) in mini-channel heatsinks. Int J Heat Mass Transfer. 2018;120:671–82.

    Article  CAS  Google Scholar 

  43. Vahedi SM, Pordanjani AH, Raisi A, Chamkha AJ. Sensitivity analysis and optimization of MHD forced convection of a Cu-water nanofluid flow past a wedge. Eur Phys J Plus. 2019;134(3):124.

    Article  Google Scholar 

  44. Yang L, Huang J-N, Mao M, Ji W. Numerical assessment of Ag-water nano-fluid flow in two new microchannel heatsinks: Thermal performance and thermodynamic considerations. Int Commun Heat Mass Transfer. 2020;110:104415.

    Article  Google Scholar 

  45. Ambreen T, Kim M-H. Effect of fin shape on the thermal performance of nanofluid-cooled micro pin-fin heat sinks. Int J Heat Mass Transfer. 2018;126:245–56.

    Article  CAS  Google Scholar 

  46. Liu F, Cai Y, Wang L, Zhao J. Effects of nanoparticle shapes on laminar forced convective heat transfer in curved ducts using two-phase model. Int J Heat Mass Transfer. 2018;116:292–305.

    Article  CAS  Google Scholar 

  47. Kim HJ, Lee S-H, Lee J-H, Jang SP. Effect of particle shape on suspension stability and thermal conductivities of water-based bohemite alumina nanofluids. Energy. 2015;90:1290–7.

    Article  CAS  Google Scholar 

  48. Vanaki SM, Mohammed HA, Abdollahi A, Wahid MA. Effect of nanoparticle shapes on the heat transfer enhancement in a wavy channel with different phase shifts. J Mol Liq. 2014;196:32–42.

    Article  CAS  Google Scholar 

  49. Yan S-R, Hajatzadeh Pordanjani A, Aghakhani S, Shahsavar Goldanlou A, Afrand M. Managment of natural convection of nanofluids inside a square enclosure by different nano powder shapes in presence of Fins with different shapes and magnetic field effect. Adv Powder Technol. 2020.

  50. Sokhal GS, Dhindsa GS, Sokhal KS, Ghazvini M, Sharifpur M, Sadeghzadeh M. Experimental investigation of heat transfer and exergy loss in heat exchanger with air bubble injection technique. J Therm Anal Calorim. 2020.

  51. Vakilabadi MA, Bidi M, Najafi AF, Ahmadi MH. Energy, exergy analysis and performance evaluation of a vacuum evaporator for solar thermal power plant zero liquid discharge systems. J Therm Anal Calorim. 2020;139(2):1275–90.

    Article  Google Scholar 

  52. Vakilabadi MA, Bidi M, Najafi AF, Ahmadi MH. Exergy analysis of a hybrid solar-fossil fuel power plant. Energy Sci Eng. 2019;7(1):146–61.

    Article  CAS  Google Scholar 

  53. Naseri A, Bidi M, Ahmadi MH. Thermodynamic and exergy analysis of a hydrogen and permeate water production process by a solar-driven transcritical CO2 power cycle with liquefied natural gas heat sink. Renew Energy. 2017;113:1215–28.

    Article  CAS  Google Scholar 

  54. Bhattacharyya S, Pathak M, Sharifpur M, Chamoli S, Ewim DRE. Heat transfer and exergy analysis of solar air heater tube with helical corrugation and perforated circular disc inserts. J Therm Anal Calorim. 2020.

  55. Attia MEH, Karthick A, Muthu-Manokar A, Driss Z, Kabeel AE, Sathyamurthy R, Sharifpur M. Sustainable potable water production from conventional solar still during the winter season at Algerian dry areas: energy and exergy analysis. J Therm Anal Calorim. 2020.

  56. Khaleduzzaman SS, Sohel MR, Mahbubul IM, Saidur R, Selvaraj J. Exergy and entropy generation analysis of TiO2–water nanofluid flow through the water block as an electronics device. Int J Heat Mass Transfer. 2016;101:104–11.

    Article  CAS  Google Scholar 

  57. Wang X, Chen M, Tate D, Rahimi H, Zhang S. Numerical investigation on hydraulic and thermal characteristics of micro latticed pin fin in the heat sink. Int J Heat Mass Transfer. 2020;149:119157.

    Article  Google Scholar 

  58. Maji A, Bhanja D, Patowari PK. Numerical investigation on heat transfer enhancement of heat sink using perforated pin fins with inline and staggered arrangement. Appl Therm Eng. 2017;125:596–616.

    Article  Google Scholar 

  59. Chiu H-C, Hsieh R-H, Wang K, Jang J-H, Yu C-R. The heat transfer characteristics of liquid cooling heat sink with micro pin fins. Int Commun Heat Mass Transfer. 2017;86:174–80.

    Article  Google Scholar 

  60. Sakanova A, Tseng KJ. Comparison of pin-fin and finned shape heat sink for power electronics in future aircraft. Appl Therm Eng. 2018;136:364–74.

    Article  Google Scholar 

  61. Timofeeva EV, Routbort JL, Singh D. Particle shape effects on thermophysical properties of alumina nanofluids. J Appl Phys. 2009;106(1):014304.

    Article  Google Scholar 

  62. Kim D, Kwon Y, Cho Y, Li C, Cheong S, Hwang Y, Lee J, Hong D, Moon S. Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions. Curr Appl Phys. 2009;9(2):e119–23.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vakkar Ali or Muhammad Ibrahim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allehiany, F.M., Mahmoud, E.E., Berrouk, S. et al. Evaluating the efficiency of pin–fin micro-heat sink considering different shapes of nanoparticle based on exergy analysis. J Therm Anal Calorim 145, 1623–1632 (2021). https://doi.org/10.1007/s10973-021-10853-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10853-9

Keywords

Navigation