Skip to main content
Log in

Effects of variable viscosity and rotation modulation on ferroconvection

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

A Correction to this article was published on 05 July 2021

This article has been updated

Abstract

We theoretically explore the dynamics of a ferrofluid with temperature and magnetic field-dependent viscosity, which is in a Rayleigh–Bénard situation and is subjected to rotation. The problem considers both sinusoidal and non-sinusoidal time-periodic variations of rotation to study the onset and post-onset regimes of Rayleigh–Bénard ferroconvection. We perform a weakly nonlinear stability analysis using a truncated Fourier series representation and arrive at the third-order Lorenz system for ferrofluid convection with variable viscosity. By using the linearized form of the Lorenz system for ferrofluid convection with variable viscosity, we arrive at the critical Rayleigh number to study the onset of rotating ferroconvection. The heat transport is quantified in terms of the time-averaged Nusselt number and the effects of various parameters on it are studied. The effect of modulated rotation is found to have a stabilizing effect on the onset of ferroconvection while that of variable viscosity has a destabilizing effect. The effects of magnetorheological and thermorheological effects are antagonistic in nature. It is found that the square waveform modulation facilitates maximum heat transport in the system due to advanced onset of ferroconvection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

Abbreviations

\(\alpha\) :

Thermal expansion coefficient

\(\chi\) :

Thermal diffusivity

\(\chi_{m}\) :

Magnetic susceptibility

\(\Delta{T}\) :

Temperature difference

\(\delta\) :

Amplitude of modulation

\(\delta_ {T}, \delta_{H}\) :

Small positive constants

\(\kappa\) :

Thermal conductivity

\(\mu\) :

Viscosity of the ferrofluid

\(\mu (H, T)\) :

Variable viscosity

\(\nabla^2\) :

Two dimensional Laplacain operator \(= \left(\frac {\partial^2}{\partial {x^2}}+\frac{\partial^2}{\partial {z^2}}\right)\)

\(\omega\) :

Frequency of modulation

\(\Phi\) :

Magnetic potential

\(\psi\) :

Stream function

\(\rho\) :

Density of the ferrofluid

\(\overrightarrow{\Omega}\) :

Speed of rotation

\(\zeta\) :

Vorticity

\(\hat{k}\) :

Unit vector in the z direction

\(\mathcal{A}\) :

Area under the curve

\(\overrightarrow{B}\) :

Magnetic induction

\(g=(0,0,-g)\) :

Gravitational acceleration (ms-2)

\(\overrightarrow{H}\) :

Magnetic field

\(\overrightarrow{M}\) :

Magneization

\(q=(u,0,w)\) :

Velocity vector

\({A_{1}}(t), {A_{2}}(t)\cdot {A_{7}}(t)\) :

Amplitudes of convection

\(C_{V\,H}\) :

Specific heat at constant volume and magnetic field (J kg-1 K-1)

\(d\) :

Depth of the horizontal plates (m)

H 0 :

Applied uniform vertical magnetic field

h 1, h 2 :

Jacobian terms

J :

Jacobian of a matrix

k :

Wave number

\(K_{l}\) :

Pyromagnetic coefficient

L :

Operator

M 0 :

Mean value of magnetization at H = H0 and T = T0

M 1 :

Buoyancy magnetization number

M 3 :

Non-buoyancy magnetization number

Nu :

Nusselt number

p :

Pressure

Pr :

Prandtl number

\(R\) :

Rayleigh number

r(ω, t) :

Time dependent modulated rotation

S :

Region of interest

T :

Temperature

t:

Time

Ta :

Taylor number

u, ω :

Components of velocity along x and z directions respectively

V :

Variable viscosity parameter

W j :

Operator (where j = 0; 1; 2)

0:

At reference value

b :

Basic state

c :

Critical

SqW :

Square wave

STW :

Sawtooth wave

SW :

Sinusoidal wave

TW :

Triangular wave

\('\) :

Perturbed quantity

*:

Dimensionless quantity

Tr :

Transpose

References

  1. Om PS, Bhadauria BS, Khan A. Modulated centrifugal convection in a vertical rotating porous layer distant from the axis of rotation. Transp Porous Med. 2009;79:255–64.

    Article  Google Scholar 

  2. Om PS, Bhadauria BS, Khan A. Rotating brinkman-lapwood convection with modulation. Transp Porous Med. 2011;88:369–83.

    Article  CAS  Google Scholar 

  3. Siddheshwar PG, Abraham A. Effect of time-periodic boundary temperatures/body force on Rayleigh-Bénard convection in ferromagnetic fluid. Acta Mech. 2003;161:131–50.

    Article  Google Scholar 

  4. Vaidyanathan G, Sekar R, Ramanathan A. The effect of magnetic field dependent viscosity on ferroconvection in rotating medium. Indian J Pure Appl Phys. 2002;40:159–65.

    CAS  Google Scholar 

  5. Gupta MD, Gupta AS. Convective instability of a layer of ferromagnetic fluid rotating about a vertical axis. Int J Eng Sci. 1979;17:271–7.

    Article  Google Scholar 

  6. Finlayson BA. Convective instability of ferromagnetic fluids. J Fluid Mech. 1970;40:753–67.

    Article  Google Scholar 

  7. Siddheshwar PG, Kanchana C. Effect of trigonometric sine, square and triangular wavetype time-periodic gravity-aligned oscillations on Rayleigh-Bénard convection in Newtonian liquids and Newtonian nanoliquids. Meccanica. 2019;54(3):451–69.

    Article  Google Scholar 

  8. Siddheshwar PG, Suthar OP, Kanchana C. Finite-amplitude ferro-convection and electro-convection in a rotating fluid. SN Applied Sciences. 2019;1.

  9. Siddheshwar PG, Ramachandramurthy V, Uma D. Rayleigh-Bénard-Marangoni magnetoconvection in Newtonian liquid with thermorheological effects. Int J Eng Sci. 2011;49:1078–94.

    Article  Google Scholar 

  10. Nield DA. The effect of temperature-dependent viscosity on the onset of convection in a saturated porous medium. J Heat Trans. 1996;118:803–5.

    Article  CAS  Google Scholar 

  11. Lorenz EN. Deterministic non-periodic flow. J Atmos Sci. 1963;30:130–41.

    Article  Google Scholar 

  12. Rubio A, Lopez JM, Marques F. Modulated rotating convection: Radially travelling concentric rolls. J Fluid Mech. 2008;608:357–78.

    Article  Google Scholar 

  13. Auernhammer G. Thermal convection in a rotating layer of a magnetic fluid. J Phys-Condens Mat. 2012;16:157–68.

    Google Scholar 

  14. Sekhar GN, Jayalatha G. Elastic effects on Rayleigh-Bénard-Marangoni convection in liquids with temperature-dependent viscosity. Proceedings of the ASME on Heat Transfer, Fluid Flows and Thermal Systems, Series. 2009;9:1–10.

    Google Scholar 

  15. Sekhar GN, Jayalatha G. Elastic effects on Rayleigh-Bénard convection in liquids with temperature-dependent viscosity. Int J Therm Sci. 2010;49:67–79.

    Article  CAS  Google Scholar 

  16. Venezian G. Effect of modulation on the onset of thermal convection. J Fluid Mech. 1969;35(2):243–54.

    Article  Google Scholar 

  17. Veronis G. Motions at subcritical values of the Rayleigh number in a rotating fluid. J Fluid Mech. 1966;24:545–54.

    Article  Google Scholar 

  18. Laroze D, Pleiner H. Thermal convection in a nonlinear non-Newtonian magnetic fluid. Comm Nonlinear Sci Numer Simulat. 2015;26.

  19. Laroze D, Siddheshwar PG, Pleiner H. Chaotic convection in a ferrofluid. Commun Nonlinear Sci Numer Simul. 2013;18:2436–47.

    Article  Google Scholar 

  20. Pérez LM, Bragard J, Díaz P, Mancini HL, Laroze D, Pleiner H. Magneto-viscous effect on thermal convection thresholds in an Oldroyd magnetic fluid. J Magn Magn Mater. 2017;444.

  21. Pérez LM, Laroze D, Díaz P, Martínez-Mardones J, Mancini H. Rotating convection in a viscoelastic magnetic fluid. J Magn Magn Mater. 2014;364:98–105.

    Article  Google Scholar 

  22. Severin J, Herwig H. Onset of convection in the Rayleigh-Bénard flow with temperature dependent viscosity: An asymptotic approach. ZAMP. 1999;50:375–86.

    Google Scholar 

  23. Sheikholeslami M, Arabkoohsar A, Babazadeh H. Modeling of nanomaterial treatment through a porous space including magnetic forces. J Therm Anal Calorim. 2019;140.

  24. Yin D, Ma HB. Analytical solution of heat transfer of oscillating flow at a triangular pressure waveform. Int J of Heat Mass Transfer. 2014;70:46–53.

    Article  Google Scholar 

  25. Bibik EE, Lavrov IS. Stability of dispersions of ferromagnetics. Colloid J USSR. 1965;27:652–5.

    CAS  Google Scholar 

  26. Prakash J. On stationary convection and oscillatory motions in ferromagnetic convection in a ferrofluid layer. J Magn Magn Mater. 2012;324:1523–7.

    Article  CAS  Google Scholar 

  27. Platten JK, Legros JC. Convection in Liquids. New York: Springer; 1984.

    Book  Google Scholar 

  28. Bhattacharjee JK. Rotating Rayleigh-Beńard convection with modulation. J Phys A. 1989;22(24):L1135.

    Article  Google Scholar 

  29. Bhattacharjee JK. Convective instability in a rotating fluid layer under modulation of the rotating rate. J Phys A. 1990;41(10):5491–4.

    CAS  Google Scholar 

  30. Kaloni PN, Lou JX. Convective instability of magnetic fluids. Phys Rev E Stat, Nonlin, Soft Matter Phys. 2004;70:1–12.

    Article  Google Scholar 

  31. Prakash J, Kumar R, Kumari K. Thermal convection in a ferromagnetic fluid layer with magnetic field dependent viscosity - A correction applied. Studia Geotech et Mech. 2017;39(3):39–46.

    Article  Google Scholar 

  32. Schwab L, Hildebrandt U, Stierstadt K. Magnetic-Beńard convection. J Magn Magn Mater. 1983;39(1):113–4.

    Article  CAS  Google Scholar 

  33. Prakash J, Kumari K, Kumar P, Kumar R, Sharma KR. Ferromagnetic convection in a rotating medium with magnetic field dependent viscosity: A correction applied. Technische Mechanik. 2019;39(2):190–201.

    Google Scholar 

  34. Gotoh K, Yamada M. Thermal convection in a horizontal layer of magnetic fluids. J Phys Soc. 1982;51:3042–8.

    Article  Google Scholar 

  35. Stiles PJ, Kagan M. Thermoconvective instability of a horizontal layer of ferrofluid in a strong vertical magnetic field. J Magn Magn Mater. 1990;85:196–8.

    Article  CAS  Google Scholar 

  36. Berkovsky BM, Medvedev VF, Krakov MS. Magnetic Fluids - Engineering Applications. Oxford: Oxford University Press; 1993.

    Google Scholar 

  37. Ramanathan A, Muchikel N. Effect of temperature-dependent viscosity on ferroconvection in a porous medium. Int J of Appl Mech Eng. 2006;11:93–104.

    Google Scholar 

  38. Siddheshwar PG, Meenakshi N. Comparison of the effects of three types of time-periodic body force on linear and non-linear stability of convection in nanoliquids. Eur J Mech. 2019;77:221–9.

    Article  Google Scholar 

  39. Sibanda P, Noreldin O. Thermo-convective instability in a rotating ferromagnetic fluid layer with temperature modulation. Open Phys. 2018;16:868–88.

    Article  CAS  Google Scholar 

  40. Siddheshwar PG, Bhadauria BS, Suthar OP. Synchronous and asynchronous boundary temperature modulations of Bénard-Darcy convection. Int J of Non-Linear Mech. 2013;49:84–9.

    Article  Google Scholar 

  41. Bhadauria BS, Kiran P. Effect of rotational speed modulation on heat transport in a fluid layer with temperature dependent viscosity and internal heat source. Ain Shams Eng J. 2014;5.

  42. Prakash J, Manan S, Kumar P. Ferromagnetic convection in a sparsely distributed porous medium with magnetic field dependent viscosity revisited. J Porous Media. 2018;21(8):749–62.

    Article  Google Scholar 

  43. Sunil, Chand P, Mahajan A, Sharma P. Effect of rotation on double-diffusive convection in a magnetized ferrofluid with internal angular momentum. J Appl Fluid Mech. 2011;4:43–52.

    Google Scholar 

  44. Sunil, Sharma D, Sharma A, Kumar P. Effect of magnetic field-dependent viscosity on thermal convection in a ferromagnetic fluid. Chem Eng Commun. 2008;195:571–83.

    Article  Google Scholar 

  45. Kanchana C, Laroze D, Siddheshwar PG,. Chaotic convection in the Rayleigh–Bénard convection problem with gravity modulation. 2021. To be submitted to Int. J. Heat Mass Transfer (Private Communication).

  46. Siddheshwar PG. Rayleigh-Bénard convection in a second-order ferromagnetic fluid with second sound. In: Proc. of 8th Asian Cong. Fluid Mech., Shenzen (China). 1999. p. 631–634.

  47. Venkatasubramanian S, Kaloni PN. Effects of rotation on the thermo-convective instability of a layer of a ferrofluids. Int J Eng Sci. 1994;32(2):237–56.

    Article  CAS  Google Scholar 

  48. Geurts B, Kunnen R. Intensified heat transfer in modulated rotating Rayleigh-Bénard convection. Int J Heat Fluid Flow. 2014;49:62–8.

    Article  Google Scholar 

  49. Rosensweig RE, Kaiser R, Miskolczy R. Viscosity of magnetic fluid in a magnetic field. J Colloid Interface Sci. 1969;29:680–6.

    Article  CAS  Google Scholar 

  50. Sekhar GN, Jayalatha G, Prakash R. Thermorheological and magnetorheological effects on Rayleigh–Bénard-Marangoni convection in ferromagnetic liquids with non-uniform basic temperature gradient. In: Proc. ASME Fluids Eng. Sys. Tech., Series 7A: 2013. p. 1–10.

  51. Sekhar GN, Siddheshwar PG, Jayalatha G, Prakash R. Throughflow effects on thermal convection in variable viscosity ferromagnetic liquids. Int J Appl Comput Math. 2017;11(6):1262–70.

    Google Scholar 

  52. Sunil, Sharma A, Sharma R. The effect of magnetic field dependent viscosity on thermosolutal convection in ferromagnetic fluid. Appl Math Comput. 2005;163:1197–214.

    Google Scholar 

  53. Rosensweig RE. Ferrohydrodynamics. Cambridge: Cambridge University Press; 1985.

    Google Scholar 

  54. Donnelly RJ. Experiments on the stability of viscous flow between rotating cylinders-III. Enhancement of hydrodynamic stability by modulation. In: Proc. R. Soc. London., No. 281, Series A: 1964. p. 130–139.

  55. Rosensweig RE, Nestor JW, Timmins RS. Ferrohydrodynamic fluids for direct conversion of heat energy. In: AICHE - Inst. Chem. Eng. Symposium, Series 5: 1965. p. 104–108.

  56. Aanam AN, Siddheshwar PG, Nagouda SS, Pranesh S. Thermoconvective instability in a vertically oscillating horizontal ferrofluid layer with variable viscosity. Heat Transfer. 2020;49:4543–64.

    Article  Google Scholar 

  57. Chandrasekhar S. The instability of a layer of fluid heated below and subject to the simultaneous action of a magnetic field and rotation, II. P Roy Soc A: Math Phy. 1956;237:476–84.

    Google Scholar 

  58. Odenbach S. Recent progress in magnetic fluid research. J Phys Condens Matter. 2004;16:1135–50.

    Article  Google Scholar 

  59. Odenbach S. Colloidal Magnetic Fluids: Basics, Development and Application of Ferrofluids. Lecture Notes in Physics. New York: Springer; 2009.

    Book  Google Scholar 

  60. Prakash J, Gupta S. On arresting the complex growth rates in ferromagnetic convection with magnetic field dependent viscosity in a rotating ferrofluid layer. J Magn Magn Mater. 2013;345:201–7.

    Article  CAS  Google Scholar 

  61. Prakash J, Kumar P, Kumari K, Manan S. Ferromagnetic convection in a densely packed porous medium with magnetic field dependent viscosity- revisited. Z Naturforsch. 2018;73(3):181–9.

    Article  CAS  Google Scholar 

  62. Siddheshwar PG, Sakshath TN. Study of Rayleigh-Bénard convection of a newtonian nanoliquid in a high porosity medium using local thermal non-equilibrium model. Int J Appl Comput Math. 2019;5.

  63. Siddheshwar PG, Sakshath TN. Steady finite-amplitude Rayleigh-Bénard convection of ethylene glycol-copper nanoliquid in a high-porosity medium made of 30% glass fiber-reinforced polycarbonate. J Therm Anal Calorim. 2020.

  64. Huang J, Luo W. Heat transfer through convection in a quasi-one-dimensional magnetic fluid. J Therm Anal Calorim. 2013;113.

  65. Zhao N, Ma H, Pan X. Wavelet analysis of oscillating motions in an oscillating heat pipe. In: ASME 2011, Int. Mech. Eng. Cong. Exposition, IMECE 2011, vol. 10; 2011.

  66. Kanchana C, Siddheshwar PG, Zhao Y. Regulation of heat transfer in Rayleigh-Bénard convection in Newtonian liquids and Newtonian nanoliquids using gravity, boundary temperature and rotational modulations. J Therm Anal Calorim. 2020.

  67. Kiran P, Narasimhulu Y. Centrifugally driven convection in a nanofluid saturated rotating porous medium with modulation. J Nanofluids. 2016;6.

Download references

Acknowledgements

The authors are grateful to the reviewers for their most useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neha Aanam A.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised due to incorrect nomenclature. The corrected nomenclature of Greek symbols, Latin symbols, subscripts and superscripts was updated.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aanam A, N., Siddheshwar, P.G., Nagouda, S.S. et al. Effects of variable viscosity and rotation modulation on ferroconvection. J Therm Anal Calorim 147, 4667–4682 (2022). https://doi.org/10.1007/s10973-021-10820-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10820-4

Keywords

Navigation