Skip to main content
Log in

The power of model-fitting kinetic analysis applied to complex thermal decomposition of explosives: reconciling the kinetics of bicyclo-HMX thermolysis in solid state and solution

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal decomposition of cis-1,3,4,6-tetranitrooctahydroimidazo-[4,5-d]imidazole (Bicyclo-HMX) both in solid state and in solution has been studied with a set of thermal analysis methods. Differential scanning calorimetry data obtained at several heating rates were analyzed using the model-fitting kinetic technique using the free open-source THINKS thermokinetic software. The kinetic parameters for a noncatalytic stage of thermolysis in solution are found to be Ea = 168.7 ± 1.4 kJ mol−1, log (A, s−1) = 15.7 ± 0.2, to prove the activation energy agrees with the theoretical prediction of the barrier for N–NO2 bond rupture in BC-HMX molecule. Thermal decomposition of solid BC-HMX is a complex process, typical for explosives. A formal three-step kinetic scheme is proposed, which explains the numerous experimental findings (thermal behavior at various confinement degree, morphology changes under heating) and the previous literature results as well. The first step of the process obeys a third-order nucleation-growth model with the Ea = 186.6 ± 1.2 kJ mol−1 and log (A, s−1) = 16.7 ± 0.3. Overall, the power of the model-fitting kinetic analysis is demonstrated and the extension of the proposed methodology to other energetic materials with complex decomposition patterns is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wemhoff AP, Becker R, Burnham AK. Calibration of chemical kinetic models using simulations of small-scale cook-off experiments, 2008, p HT2008.

  2. Afanas’ev GT, Bobolev VK. Initiation of solid explosives by impact. Moscow: Nauka; 1968.

    Google Scholar 

  3. Sinditskii VP, Egorshev VYu, Serushkin VV, Levshenkov AI, Berezin MV, Filatov SA, Smirnov SP. Evaluation of decomposition kinetics of energetic materials in the combustion wave. Thermochim Acta. 2009;496:1–12.

    Article  CAS  Google Scholar 

  4. Manelis GB, Nazin GM, Rubtsov YuI, Strunin VA, editors. Thermal decomposition and combustion of explosives and propellants. London: Taylor & Francis; 2003.

    Google Scholar 

  5. Brill TB, Gongwer PE, Williams GK. Thermal decomposition of energetic materials. 66. Kinetic compensation effects in HMX, RDX, and NTO. J Phys Chem. 1994;98:12242–7.

    Article  CAS  Google Scholar 

  6. Hinshelwood CN. LXXVII.—Some physico-chemical problems connected with the stability of explosives. J Chem Soc Trans. 1921;119:721–34.

    Article  CAS  Google Scholar 

  7. Koppes WM, Chaykovsky M, Adolph HG, Gilardi R, George C. Synthesis and structure of some peri-substituted 2,4,6,8-tetraazabicyclo[3.3.0]octanes. J Org Chem. 1987;52:1113–9.

    Article  CAS  Google Scholar 

  8. Chaykovsky M, Koppes WM. Synthesis of energetic materials, Report ADA199472. Silver Spring, MD: NSWC; 1987.

    Google Scholar 

  9. Pagoria PF, Mitchell AR, Schmidt RD, Coon CL, Jessop ES. New Nitration and Nitrolysis Procedures in the Synthesis of Energetic Materials. In: Albright LF, Carr RVC, Schmitt RJ, editors. Nitration, vol. 623. Washington, DC: ACS Symposium Series American Chemical Society; 1996. p. 151.

    Chapter  Google Scholar 

  10. Eck G, Piteau M, Process for the synthesis of 2,4,6,8-tetranitro-2,4,6,8-tetraazabicyclo (3.3.0) octane, U.S. Pat. 5,569,032, Paris. 1997

  11. Gilardi R, Flippen-Anderson JL, Evans R. cis -2,4,6,8-Tetranitro-1 H,5 H -2,4,6,8-tetraazabicyclo[3.3.0]octane, the energetic compound `bicyclo-HMX’. Acta Crystallogr Sect E Struct Rep Online. 2002;58:o972–4.

    Article  CAS  Google Scholar 

  12. Klasovitý D, Zeman S, Růžička A, Jungová M, Roháč M. cis-1,3,4,6-Tetranitrooctahydroimidazo-[4,5-d]imidazole (BCHMX), its properties and initiation reactivity. J Hazard Mater. 2009;164:954–61.

    Article  Google Scholar 

  13. Zeman S, Hussein AK, Elbeih A, Jungova M. cis-1,3,4,6-Tetranitrooctahydroimidazo-[4,5-d]imidazole (BCHMX) as a part of explosive mixtures. Def Technol. 2018;14:380–4.

    Article  Google Scholar 

  14. Simpson RL, Urtiew PA, Ornellas DL, Moody GL, Scribner KJ, Hoffman DM. CL-20 performance exceeds that of HMX and its sensitivity is moderate. Propellants Explos Pyrotech. 1997;22:249–55.

    Article  CAS  Google Scholar 

  15. Koch E-C. TEX-4,10-Dinitro-2,6,8,12-tetraoxa-4,10-diazatetracyclo[5.5.0.0 5,9.0 3,11 ]-dodecane—review of a promising high density insensitive energetic material. Propellants Explos Pyrotech. 2015;40:374–87.

    Article  CAS  Google Scholar 

  16. Stepanov RS, Kruglyakova LA, Astakhov AM. Kinetics of thermal decomposition of some N-nitroamines possessing two fused five-membered rings. Russ J Gen Chem. 2006;76:1974–5.

    Article  CAS  Google Scholar 

  17. Stepanov RS, Kruglyakova LA, Astakhov AM. Effect of the structure of cyclic N-nitramines on the rate and mechanism of their thermolysis. Russ J Gen Chem. 2007;77:1293–9.

    Article  CAS  Google Scholar 

  18. Goncharov TK, Dubikhin VV, Nazin GM, Prokudin VG, Aliev ZG. Thermal decomposition of cis-2, 4, 6, 8-tetranitro-1H, 5H–2, 4, 6, 8-tetraazabicyclo[3.3.0]octane. Russ Chem Bull. 2011;60:1138–43.

    Article  CAS  Google Scholar 

  19. Elbeih A, Pachman J, Zeman S, Vávra P, Trzciński WA, Akštein Z. Detonation characteristics of plastic explosives based on attractive nitramines with polyisobutylene and poly(methyl methacrylate) binders. J Energ Mater. 2012;30:358–71.

    Article  CAS  Google Scholar 

  20. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  21. Yan Q-L, Zeman S, Svoboda R, Elbeih A. Thermodynamic properties, decomposition kinetics and reaction models of BCHMX and its formex bonded explosive. Thermochim Acta. 2012;547:150–60.

    Article  CAS  Google Scholar 

  22. Elbeih A, Abd-Elghany M, Klapötke TM. Kinetic parameters of PBX based on Cis-1,3,4,6-tetranitroocta-hydroimidazo-[4,5-d] imidazole obtained by isoconversional methods using different thermal analysis techniques. Propellants Explos Pyrotech. 2017;42:468–76.

    Article  CAS  Google Scholar 

  23. Muravyev NV, Pivkina AN, Koga N. Critical appraisal of kinetic calculation methods applied to overlapping multistep reactions. Molecules. 2019;24:2298.

    Article  CAS  Google Scholar 

  24. Shu Y, Korsunskii BL, Nazin GM. The mechanism of thermal decomposition of secondary nitramines. Russ Chem Rev. 2004;73:293–307.

    Article  CAS  Google Scholar 

  25. Dubovitskii FI, Korsunskii BL. Kinetics of the thermal decomposition of N-nitro-compounds. Russ Chem Rev. 1981;50:958–78.

    Article  Google Scholar 

  26. Ye C-C, An Q, Goddard WA, Cheng T, Zybin S, Ju X, Initial Decomposition Reactions of Bicyclo-HMX [BCHMX or cis -1,3,4,6-Tetranitrooctahydroimidazo-[4,5- d ]imidazole] from Quantum Molecular Dynamics Simulations. J Phys Chem. C 2015, 150123143703008.

  27. Burnham AK, Dinh LN. A comparison of isoconversional and model-fitting approaches to kinetic parameter estimation and application predictions. J Therm Anal Calorim. 2007;89:479–90.

    Article  CAS  Google Scholar 

  28. ASTM E698-05. Standard Test Method for Arrhenius Kinetic Constants for Thermally Unstable Materials, ASTM International, West Conshohocken, PA. 2005.

  29. Schindler A, Neumann G, Rager A, Füglein E, Blumm J, Denner T. A novel direct coupling of simultaneous thermal analysis (STA) and Fourier transform-infrared (FT-IR) spectroscopy. J Therm Anal Calorim. 2013;113:1091–102.

    Article  CAS  Google Scholar 

  30. Vyazovkin S, Chrissafis K, Di Lorenzo ML, Koga N, Pijolat M, Roduit B, Sbirrazzuoli N, Suñol JJ. ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta. 2014;590:1–23.

    Article  CAS  Google Scholar 

  31. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci C Polym Symp. 1964;6:183–95.

    Article  Google Scholar 

  32. Burnham AK, Zhou X, Broadbelt LJ. Critical review of the global chemical kinetics of cellulose thermal decomposition. Energy Fuels. 2015;29:2906–18.

    Article  CAS  Google Scholar 

  33. Stoessel F. Thermal safety of chemical processes. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2008.

    Book  Google Scholar 

  34. Kolmogorov A, A statistical theory for the recrystallization of metals. Izv Akad Nauk SSSR Ser Mat. 1937; 355–359.

  35. Johnson WA, Mehl RF. Reaction kinetics in processes of nucleation and growth. Trans AIME. 1939;135:416–42.

    Google Scholar 

  36. Avrami M. Kinetics of phase change. I General theory. J Chem Phys. 1939;7:1103.

    Article  CAS  Google Scholar 

  37. Erofeev BV. Generalized equation of chemical kinetics and its application to reactions involving solid phase components. Dokl Akad Nauk USSR. 1946;52:515–8.

    Google Scholar 

  38. Koga N, Goshi Y, Yamada S, Pérez-Maqueda LA. Kinetic approach to partially overlapped thermal decomposition processes: co-precipitated zinc carbonates. J Therm Anal Calorim. 2013;111:1463–74.

    Article  CAS  Google Scholar 

  39. Sánchez-Jiménez PE, Perejón A, Criado JM, Diánez MJ, Pérez-Maqueda LA. Kinetic model for thermal dehydrochlorination of poly(vinyl chloride). Polymer. 2010;51:3998–4007.

    Article  Google Scholar 

  40. Roduit B, Hartmann M, Folly P, Sarbach A, Baltensperger R. Prediction of thermal stability of materials by modified kinetic and model selection approaches based on limited amount of experimental points. Thermochim Acta. 2014;579:31–9.

    Article  CAS  Google Scholar 

  41. Bohn MA. Assessment of description quality of models by information theoretical criteria based on Akaike and Schwarz-Bayes applied with stability data of energetic materials. In: Proceedings of the 46th international annual conference of the Fraunhofer ICT, 2015, p 6.1.

  42. Pérez-Maqueda LA, Criado JM, Sánchez-Jiménez PE. Combined kinetic analysis of solid-state reactions: a powerful tool for the simultaneous determination of kinetic parameters and the kinetic model without previous assumptions on the reaction mechanism. J Phys Chem A. 2006;110:12456–62.

    Article  Google Scholar 

  43. Moukhina E. Determination of kinetic mechanisms for reactions measured with thermoanalytical instruments. J Therm Anal Calorim. 2012;109:1203–14.

    Article  CAS  Google Scholar 

  44. Kossoy A, Do we know everything about DSC data? The overall reaction heat depends on heating rate—is it possible? 2019.

  45. Korsounskii BL, Matveev VG, Nazina LD, Nazin GM. Mechanism of the primary stages of decomposition of aliphatic nitro- and fluoronitronitramines. Russ Chem Bull. 1998;47:253–8.

    Article  CAS  Google Scholar 

  46. Oyumi Y, Brill TB, Rheingold AL. Thermal decomposition of energetic materials. 7. High-rate FTIR studies and the structure of 1,1,1,3,6,8,8,8-octanitro-3,6-diazaoctane. J Phys Chem. 1985;89:4824–8.

    Article  CAS  Google Scholar 

  47. Brill TB, Arisawa H, Brush PJ, Gongwer PE, Williams GK. Surface chemistry of burning explosives and propellants. J Phys Chem. 1995;99:1384–92.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Russian Science Foundation (Project 19-73-20217) for a financial support of this work. Characterization of the substances was performed in the Department of Structural Studies of Zelinsky Institute of Organic Chemistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikita V. Muravyev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 645 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muravyev, N.V., Melnikov, I.N., Monogarov, K.A. et al. The power of model-fitting kinetic analysis applied to complex thermal decomposition of explosives: reconciling the kinetics of bicyclo-HMX thermolysis in solid state and solution. J Therm Anal Calorim 147, 3195–3206 (2022). https://doi.org/10.1007/s10973-021-10686-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10686-6

Keywords

Navigation