Skip to main content
Log in

Energy and exergy analysis, drying kinetics, modeling, microstructure and thermal properties of convective-dried banana slices

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this presented study, the convective air drying method at three drying temperatures (50, 60 and 70 °C) was applied to investigate in terms of energy and exergy analysis, drying kinetics, modeling, microstructure and thermal properties of banana slices. Results of data analysis displayed that the energy and the exergy efficiencies were reduced, while the drying temperature surged. The drying process at 70 °C shortened the overall drying period (300 min), which was followed by 60 °C (480 min) and 50 °C (720 min), respectively. Moreover, the process occurred in the decreasing rate with time. At each drying temperature, various models (Midilli et al. for 50 °C, diffusion approach for 60 °C and logarithmic for 70 °C) described the best models for the drying curves. The convective-dried banana samples were imaged by the thermal camera and scanning electron microscopy, and a breakdown of cell walls without any regional burns was determined in dried samples at 50 °C. The result of this study could be used as a convective drying in industrial purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Maskan M. Microwave/air and microwave finish drying of banana. J Food Eng. 2000;44(2):71–8.

    Article  Google Scholar 

  2. Cano-Chauca M, Ramos AM, Stringheta PC, Pereira JA. Drying curves and water activity evaluation of dried banana. In: Proceedings of the 14th international drying symposium. São Paulo, Brazil; 2004, pp 22–5.

  3. Fernandes FA, Rodrigues S. Ultrasound as pre-treatment for drying of fruits: dehydration of banana. J Food Eng. 2007;82(2):261–7.

    Article  Google Scholar 

  4. Fernandes FA, Rodrigues S, Gaspareto OC, Oliveira EL. Optimization of osmotic dehydration of bananas followed by air-drying. J Food Eng. 2006;77(1):188–93.

    Article  Google Scholar 

  5. Thuwapanichayanan R, Prachayawarakorn S, Kunwisawa J, Soponronnarit S. Determination of effective moisture diffusivity and assessment of quality attributes of banana slices during drying. LWT-Food Sci Technol. 2011;44(6):1502–10.

    Article  CAS  Google Scholar 

  6. FAO (2019). Food and agricultural organization statistica database. http://faostat3.fao.org/download/Q/QC/E. Accessed 01/10/2019.

  7. Da Silva WP, Silva CM, Gama FJ, Gomes JP. Mathematical models to describe thin-layer drying and to determine drying rate of whole bananas. J Saudi Soc Agric Sci. 2014;13(1):67–74.

    Google Scholar 

  8. Baini R, Langrish TAG. Choosing an appropriate drying model for intermittent and continuous drying of bananas. J Food Eng. 2007;79(1):330–43.

    Article  Google Scholar 

  9. Tunckal C, Doymaz İ. Performance analysis and mathematical modelling of banana slices in a heat pump drying system. Renew Energy. 2020;150:918–23.

    Article  Google Scholar 

  10. Khampakool A, Soisungwan S, Park SH. Potential application of infrared assisted freeze drying (IRAFD) for banana snacks: Drying kinetics, energy consumption, and texture. LWT Food Sci Technol. 2019;99:355–63.

    Article  CAS  Google Scholar 

  11. Lingayat A, Chandramohan VP, Raju VRK. Design, development and performance of indirect type solar dryer for banana drying. Energy Procedia. 2017;109:409–16.

    Article  Google Scholar 

  12. Olusegun-Omolola A, Obiefuna-Jideani AI, Francis-Kapila P, Adaora-Jideani V. Optimization of oven drying conditions of banana (Musa spp., AAA group, cv “Luvhele” and ’Mabonde’) using response surface methodology. Agrociencia. 2018;52(4):539–51.

    Google Scholar 

  13. Takougnadi E, Boroze TET, Azouma OY. Effects of drying conditions on energy consumption and the nutritional and organoleptic quality of dried bananas. J Food Eng. 2020;268:e109747.

    Article  Google Scholar 

  14. Siriamornpun S, Kaisoon O, Meeso N. Changes in colour, antioxidant activities and carotenoids (lycopene, β-carotene, lutein) of marigold flower (Tagetes erecta L.) resulting from different drying processes. J Funct Foods. 2012;4(4):757–66.

    Article  CAS  Google Scholar 

  15. Boles MA, Cengel YA. Thermodynamics: an engineering approach. New York: McGraw-Hill; 1989.

    Google Scholar 

  16. Cengel YA, Wood B, Dincer I. Is bigger thermodynamically better? Exergy. 2002;2:62–8.

    Article  Google Scholar 

  17. Motevali A, Minaei S, Banakar A, Ghobadian B, Khoshtaghaza MH. Comparison of energy parameters in various dryers. Energy Convers Manag. 2014;87:711–25.

    Article  Google Scholar 

  18. Akpinar EK. Energy and exergy analyses of drying of red pepper slices in a convective type dryer. Int Commun Heat Mass Transf. 2004;31(8):1165–76.

    Article  Google Scholar 

  19. Westerman PW, White GM, Ross IJ. Relative humidity effect on the high temperature drying of shelled corn. Trans ASAE. 1973;16:1136–9.

    Article  Google Scholar 

  20. Ayensu A. Dehydration of food crops using a solar dryer with convective heat flow. Sol Energy. 1997;59:121–6.

    Article  Google Scholar 

  21. White GM, Ross IJ, Ponelert R. Fully exposed drying of popcorn. Trans ASAE. 1981;24:466–8.

    Article  Google Scholar 

  22. Yagcioglu A, Degirmencioglu A, Cagatay F. Drying characteristics of the laurel leaves under different drying conditions. In: Proceedings of the 7th international congress on agricultural mechanization and energy. 1999, pp. 565–9.

  23. Madamba PS, Driscoll RH, Buckle KA. The thin-layer drying characteristics of garlic slices. J Food Eng. 1996;29:75–97.

    Article  Google Scholar 

  24. Sharaf-Eldeen YI, Blaisdell JL, Hamdy MY. A model for ear corn drying. Trans ASAE. 1980;5:1261–5.

    Article  Google Scholar 

  25. Wang CY, Singh RP. A single layer drying equation for rough rice. ASAE. 1978;78:33.

    Google Scholar 

  26. Kassem AS. Comparative studies on thin layer drying models for wheat. In: 13th international congress on agricultural engineering. 1998, pp. 2–6.

  27. Verma LR, Bucklin RA, Endan JB, Wratten FT. Effects of drying air parameters on rice drying models. Trans ASAE. 1985;28(1):296–301.

    Article  Google Scholar 

  28. Midilli A, Kucuk H, Yapar Z. A new model for single layer drying. Drying Technol. 2002;20:1503–13.

    Article  Google Scholar 

  29. Thorat ID, Mohapatra D, Sutar RF, Kapdi SS, Jagtap DD. Mathematical modeling and experimental study on thin-layer vacuum drying of ginger (Zingiber officinale R.) slices. Food Bioprocess Technol. 2012;5(4):1379–83.

    Article  Google Scholar 

  30. Aral S, Beşe AV. Convective drying of hawthorn fruit (Crataegus spp.): effect of experimental parameters on drying kinetics, color, shrinkage, and rehydration capacity. Food Chem. 2016;210:577–84.

    Article  CAS  Google Scholar 

  31. Çelen S. Effect of microwave drying on the drying characteristics, color, microstructure, and thermal properties of trabzon persimmon. Foods. 2019;8(2):1–19.

    Google Scholar 

  32. Sakin-Yilmazer M. Convective drying behavior of tarhana dough. J Food Process Eng. 2017;40(1):e12296.

    Article  Google Scholar 

  33. Arumuganathan T, Manikantan MR, Rai RD, Anandakumar S, Khare V. Mathematical modeling of drying kinetics of milky mushroom in a fluidized bed dryer. Int Agrophys. 2009;23(1):1–7.

    Google Scholar 

  34. Beigi M. Energy efficiency and moisture diffusivity of apple slices during convective drying. Food Sci Technol. 2016;36(1):145–50.

    Article  Google Scholar 

  35. Briki S, Zitouni B, Bechaa B, Amiali M. Comparison of convective and infrared heating as means of drying pomegranate arils (Punica granatum L.). Heat Mass Transf. 2019;55(11):3189–99.

    Article  CAS  Google Scholar 

  36. Guine RP, Brito MF, Ribeiro JR. Evaluation of mass transfer properties in convective drying of kiwi and eggplant. Int J Food Eng. 2017;13(7):20160257.

    Article  Google Scholar 

  37. Eminoğlu MB, Yegül U, Sacilik K. Drying characteristics of blackberry fruits in a convective hot-air dryer. Hortic Sci. 2019;54(9):1546–50.

    Google Scholar 

  38. Zielinska M, Sadowski P, Błaszczak W. Combined hot air convective drying and microwave-vacuum drying of blueberries (Vaccinium corymbosum L.): drying kinetics and quality characteristics. Drying Technol. 2016;34(6):665–84.

    Article  CAS  Google Scholar 

  39. Taşkın O, İzli G, İzli N. Convective drying kinetics and quality parameters of european cranberrybush. Tarım Bilim Derg. 2018;24(3):349–58.

    Article  Google Scholar 

  40. Toğrul İT, Pehlivan D. Modelling of thin layer drying kinetics of some fruits under open-air sun drying process. J Food Eng. 2004;65(3):413–25.

    Article  Google Scholar 

  41. Xanthopoulos G, Oikonomou N, Lambrinos G. Applicability of a single-layer drying model to predict the drying rate of whole figs. J Food Eng. 2007;81(3):553–9.

    Article  Google Scholar 

  42. Karunasena HCP, Hesami P, Senadeera W, Gu Y, Brown RJ, Oloyede A. Scanning electron microscopic study of microstructure of gala apples during hot air drying. Drying Technol. 2014;32(4):455–68.

    Article  CAS  Google Scholar 

  43. Wang H, Zhang M, Mujumdar AS. Comparison of three new drying methods for drying characteristics and quality of shiitake mushroom (Lentinus edodes). Drying Technol. 2014;32(15):1791–802.

    Article  CAS  Google Scholar 

  44. Wei Q, Huang J, Zhang Z, Lia D, Liu C, Xiao Y, Lagnika C, Zhang M. Effects of different combined drying methods on drying uniformity and quality of dried taro slices. Drying Technol. 2019;37(3):322–30.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Onur Taskin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taskin, O., Polat, A., Etemoglu, A.B. et al. Energy and exergy analysis, drying kinetics, modeling, microstructure and thermal properties of convective-dried banana slices. J Therm Anal Calorim 147, 2343–2351 (2022). https://doi.org/10.1007/s10973-021-10639-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10639-z

Keywords

Navigation