Skip to main content
Log in

A deep learning method for estimating the boiling heat transfer coefficient of porous surfaces

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Owing to the high nucleation site density and relatively robust behavior, sintered coated surfaces are of great interest for thermal management via pool boiling in many industries/applications such as desalination, electronics cooling, petrochemical, and power sector. The coated surfaces have been extensively used to improve the performance of the pool boiling process over the years. Regardless of a large amount of experimental data on the pool boiling of coated surfaces, no accurate mathematical/empirical approaches have been developed to estimate the heat transfer coefficient of these surfaces. The present study develops an AI-based method to estimate the pool boiling heat transfer coefficient for coated porous surfaces. The proposed AI method can handle the complex nature of the coating characteristics such as porosity, coating thickness, and particle size. Via using deep neural networks, the proposed method is applicable for highly wetting fluids (dielectric liquids), refrigerants, and low-wetting liquid (water). Correlation matrix analysis confirms that porosity, coating thickness, particle size, wall superheat, and surface inclination as well as the thermophysical properties of the working fluids are the best independent variables to estimate the considered parameter. Different deep neural networks are designed and evaluated to find the optimized model in terms of its predictive accuracy by experimental data (373 points). The best model with an input layer, three hidden layers, and an output layer (11–30–15–1–1) was able to predict the heat transfer coefficient with overall R2 = 0.976 and (mean absolute error) MAE% = 5.74. The proposed approach is simple and can be employed to optimize the sintered coated surfaces for different cooling applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ahmad SW, Lewis JS, McGlen RJ, Karayiannis TG. Pool boiling on modified surfaces using R-123. Heat Transf Eng. 2014;35(16–17):1491–503.

    Article  CAS  Google Scholar 

  2. Dąbek L, Kapjor A, Orman ŁJ. Distilled water and ethyl alcohol boiling heat transfer on selected meshed surfaces. Mech Ind. 2019;20(7):701.

    Article  Google Scholar 

  3. Deng D, Wan W, Feng J, Huang Q, Qin Y, Xie Y. Comparative experimental study on pool boiling performance of porous coating and solid structures with reentrant channels. Appl Therm Eng. 2016;107:420–30.

    Article  CAS  Google Scholar 

  4. Dewangan AK, Kumar A, Kumar R. Experimental study of nucleate pool boiling of R-134a and R-410A on a porous surface. Heat Transf Eng. 2019;40(15):1249–58.

    Article  CAS  Google Scholar 

  5. Gupta SK, Misra RD. Development of micro/nanostructured-Cu–TiO2-nanocomposite surfaces to improve pool boiling heat transfer performance. Heat Mass Transf. 2020.

  6. Hu Y, Zhang S, Li X, Wang S. Heat transfer enhancement of subcooled pool boiling with self-rewetting fluid. Int J Heat Mass Transf. 2015;83:64–8.

    Article  CAS  Google Scholar 

  7. Jun S, Kim J, Son D, Kim HY, You SM. Enhancement of pool boiling heat transfer in water using sintered copper microporous coatings. Nucl Eng Technol. 2016;48(4):932–40.

    Article  Google Scholar 

  8. Jun S, Kim J, You SM, Kim HY. Effect of subcooling on pool boiling of water from sintered copper microporous coating at different orientations. Sci Technol Nucl Install. 2018;2018.

  9. Li C, Peterson G. Evaporation/boiling in thin capillary wicks (II)—effects of volumetric porosity and mesh size. 2006.

  10. Li C, Peterson G. Parametric study of pool boiling on horizontal highly conductive microporous coated surfaces. 2007.

  11. Liu F. A study of sintered copper porous surfaces for pool boiling enhancement. 2016.

  12. McHale JP, Garimella SV, Fisher TS, Powell GA. Pool boiling performance comparison of smooth and sintered copper surfaces with and without carbon nanotubes. Nanoscale Microscale Thermophys Eng. 2011;15(3):133–50.

    Article  CAS  Google Scholar 

  13. Mori S, Aznam SM, Okuyama K. Enhancement of the critical heat flux in saturated pool boiling of water by nanoparticle-coating and a honeycomb porous plate. Int J Heat Mass Transf. 2015;80:1–6.

    Article  Google Scholar 

  14. Nasersharifi Y, Kaviany M, Hwang G. Pool-boiling enhancement using multilevel modulated wick. Appl Therm Eng. 2018;137:268–76.

    Article  CAS  Google Scholar 

  15. Pastuszko R, Kaniowski R, Wójcik TM. Comparison of pool boiling performance for plain micro-fins and micro-fins with a porous layer. Appl Therm Eng. 2020;166:114658.

    Article  CAS  Google Scholar 

  16. Rahimian A, Kazeminejad H, Khalafi H, Akhavan A, Mirvakili SM. Boiling heat transfer and critical heat flux enhancement using electrophoretic deposition of SiO2 nanofluid. Sci Technol Nucl Install. 2019; 2019.

  17. Rioux RP, Nolan EC, Li CH. A systematic study of pool boiling heat transfer on structured porous surfaces: from nanoscale through microscale to macroscale. AIP Adv. 2014;4(11):117133.

    Article  Google Scholar 

  18. Sajjad U, Sadeghianjahromi A, Ali HM, Wang C-C. Enhanced pool boiling of dielectric and highly wetting liquids—a review on enhancement mechanisms. Int Commun Heat Mass Transfer. 2020;119:104950.

    Article  CAS  Google Scholar 

  19. Sajjad U, Wang C-C. Nucleate pool boiling of high flux sintered coated porous surfaces with dielectric liquid, HFE-7200. Journal of Enhanced Heat Transfer.

  20. Sarangi S, Weibel JA, Garimella SV. Effect of particle size on surface-coating enhancement of pool boiling heat transfer. Int J Heat Mass Transf. 2015;81:103–13.

    Article  CAS  Google Scholar 

  21. Tran N, Sajjad U, Lin R, Wang C-C. Effects of surface inclination and type of surface roughness on the nucleate boiling heat transfer performance of HFE-7200 dielectric fluid. Int J Heat Mass Transf. 2020;147:119015.

    Article  CAS  Google Scholar 

  22. Wen M-Y, Ho C-Y, Jang K-J. An optimal parametric design to improve pool boiling heat transfer of sintered surfaces. J Eng Technol Res. 2012;4(3):49–56.

    Google Scholar 

  23. Xu H, Dai Y, Cao H, Liu J, Zhang L, Xu M, et al. Tubes with coated and sintered porous surface for highly efficient heat exchangers. Front Chem Sci Eng. 2018;12(3):367–75.

    Article  CAS  Google Scholar 

  24. Xu Z, Qu Z, Zhao C, Tao W. Pool boiling heat transfer on open-celled metallic foam sintered surface under saturation condition. Int J Heat Mass Transf. 2011;54(17–18):3856–67.

    Article  CAS  Google Scholar 

  25. Zhang K, Bai L, Lin G, Jin H, Wen D. Experimental study on pool boiling in a porous artery structure. Appl Therm Eng. 2019;149:377–84.

    Article  CAS  Google Scholar 

  26. Kiyomura IS, Mogaji TS, Manetti LL, Cardoso EM. A predictive model for confined and unconfined nucleate boiling heat transfer coefficient. Appl Therm Eng. 2017;127:1274–84.

    Article  CAS  Google Scholar 

  27. Abbas N, Hussain M, Zahra N, Ahmad H, Muhammad S, Mehdi Z, et al. Optimization of Cr seed layer effect for surface roughness of As-deposited silver film using electron beam deposition method. J Chem Soc Pak. 2020;42(1):23–30.

    CAS  Google Scholar 

  28. Abbas N, Shad MR, Hussain M, Mehdi SMZ, Sajjad U. Fabrication and characterization of silver thin films using physical vapor deposition, and the investigation of annealing effects on their structures. Mater Res Express. 2019;6(11):116437.

    Article  Google Scholar 

  29. Kiyomura I, Manetti L, Da Cunha A, Ribatski G, Cardoso E. An analysis of the effects of nanoparticles deposition on characteristics of the heating surface and ON pool boiling of water. Int J Heat Mass Transf. 2017;106:666–74.

    Article  CAS  Google Scholar 

  30. Manetti LL, Ribatski G, de Souza RR, Cardoso EM. Pool boiling heat transfer of HFE-7100 on metal foams. Exp Thermal Fluid Sci. 2020;113:110025.

    Article  CAS  Google Scholar 

  31. Nunes JM, de Souza RR, Rodrigues AR, Safaei MR, Cardoso EM. Influence of coated surfaces and gap size on boiling heat transfer of deionized water. J Braz Soc Mech Sci Eng. 2020;42(3):1–14.

    Article  Google Scholar 

  32. Fazel SAA. A genetic algorithm-based optimization model for pool boiling heat transfer on horizontal rod heaters at isolated bubble regime. Heat Mass Transf. 2017;53(9):2731–44.

    Article  Google Scholar 

  33. Liu Y, Dinh N, Sato Y, Niceno B. Data-driven modeling for boiling heat transfer: using deep neural networks and high-fidelity simulation results. Appl Therm Eng. 2018;144:305–20.

    Article  Google Scholar 

  34. Hassanpour M, Vaferi B, Masoumi ME. Estimation of pool boiling heat transfer coefficient of alumina water-based nanofluids by various artificial intelligence (AI) approaches. Appl Therm Eng. 2018;128:1208–22.

    Article  CAS  Google Scholar 

  35. Gajghate SS, Barathula S, Das S, Saha BB, Bhaumik S. Experimental investigation and optimization of pool boiling heat transfer enhancement over graphene-coated copper surface. J Therm Anal Calorim. 2019:1–19.

  36. Alic E, Das M, Kaska O. Heat flux estimation at pool boiling processes with computational intelligence methods. Processes. 2019;7(5):293.

    Article  Google Scholar 

  37. Zarei M, Ansari H, Keshavarz P, Zerafat M. Prediction of pool boiling heat transfer coefficient for various nano-refrigerants utilizing artificial neural networks. J Therm Anal Calorim. 2020;139(6):3757–68.

    Article  CAS  Google Scholar 

  38. Može M, Zupančič M, Golobič I. Investigation of the scatter in reported pool boiling CHF measurements including analysis of heat flux and measurement uncertainty evaluation methodology. Appl Therm Eng. 2020;169:114938.

    Article  Google Scholar 

  39. Esfe MH, Wongwises S, Naderi A, Asadi A, Safaei MR, Rostamian H, et al. Thermal conductivity of Cu/TiO2–water/EG hybrid nanofluid: experimental data and modeling using artificial neural network and correlation. Int Commun Heat Mass Transf. 2015;66:100–4.

    Article  Google Scholar 

  40. Maleki A, Elahi M, Assad MEH, Nazari MA, Shadloo MS, Nabipour N. Thermal conductivity modeling of nanofluids with ZnO particles by using approaches based on artificial neural network and MARS. J Therm Anal Calorim. 2020:1–12.

  41. Safaei MR, Tlili I, Gholamalizadeh E, Abbas T, Alkanhal TA, Goodarzi M et al. Thermal analysis of a binary base fluid in pool boiling system of glycol–water alumina nano-suspension. J Therm Anal Calorim. 2020:1–10.

  42. Sarafraz MM, Tlili I, Tian Z, Khan AR, Safaei MR. Thermal analysis and thermo-hydraulic characteristics of zirconia–water nanofluid under a convective boiling regime. J Therm Anal Calorim. 2020;139(4):2413–22.

    Article  CAS  Google Scholar 

  43. Wang N, Maleki A, Alhuyi Nazari M, Tlili I, Safdari SM. Thermal conductivity modeling of nanofluids contain MgO particles by employing different approaches. Symmetry. 2020;12(2):206.

    Article  CAS  Google Scholar 

  44. Zheng Y, Shadloo MS, Nasiri H, Maleki A, Karimipour A, Tlili I. Prediction of viscosity of biodiesel blends using various artificial model and comparison with empirical correlations. Renew Energy. 2020.

  45. Lee Rodgers J, Nicewander WA. Thirteen ways to look at the correlation coefficient. Am Stat. 1988;42(1):59–66.

    Article  Google Scholar 

  46. Kumar A, Hung K-S, Wang C-C. Nucleate pool boiling heat transfer from high-flux tube with dielectric fluid HFE-7200. Energies. 2020;13(9):2313.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are indebted to the financial support from the Ministry of science and technology, Taiwan under contracts 108-2221-E-009-058-MY3 and 109-2622-E-009-0015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafiz Muhammad Ali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sajjad, U., Hussain, I., Hamid, K. et al. A deep learning method for estimating the boiling heat transfer coefficient of porous surfaces. J Therm Anal Calorim 145, 1911–1923 (2021). https://doi.org/10.1007/s10973-021-10606-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-021-10606-8

Keywords

Navigation