Skip to main content
Log in

Hydrodynamic analysis of a heat exchanger with crosscut twisted tapes and filled with thermal oil-based SWCNT nanofluid: applying ANN for prediction of objective parameters

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Present study investigates hydrodynamic analysis of heat exchanger with crosscut twisted tapes and filled with thermal oil-based SWCNT nanofluid (NF). SIMPLE algorithm and FVM method are used. The heat transfer fluid enters the test section at Tin = 300 K in different flow velocities, which are related with Reynolds numbers 5000, 10,000, 15,000 and 20,000. For ensuring that the input flow to test section is always fully developed, the input part to length 2L is considered. It is also intended to ensure that the flow does not return to test section of the exit section of length L. Also, the test section has the constant temperature of Ts = 400 K. Different geometrical parameters of twisted tapes in heat exchanger are studied. The optimization is carried out due to fulfill the highest performance evaluation criterion (PEC index). Based on results, usage of twisted tapes has a sharp impact on thermal and hydraulic characteristics of heat exchanger and leading to swirling motion, which improve the heat transfer coefficient and augment the pressure drop (ΔP). Besides, usage of simple model is more efficient than crosscut model. Also, it is understood that the PEC index values always are more than 1.11, which means that employment of these turbulators is effective and positive with thermal–hydraulic viewpoint. The simple model (Case K and N = 8) is introduced as the most optimum model in this paper, and its PEC values for system filled with NF in ϕ = 0.8% at Re = 5000, 10,000, 15,000 and 20,000 are 1.37, 1.59, 1.78 and 1.93, respectively. The application of machine learning methods showed that the output parameters in the simulation of heat exchangers are well predicted. The accuracy of the developed neural network was such that the maximum error was below 1%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Figure 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Figure 7
Fig. 8
Figure 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Ahmadi Nadooshan A, Kalbasi R, Afrand M. Perforated fins effect on the heat transfer rate from a circular tube by using wind tunnel: an experimental view. Heat Mass Transf. 2018;54(10):3047–57. https://doi.org/10.1007/s00231-018-2333-3.

    Article  CAS  Google Scholar 

  2. Gholipour S, Afrand M, Kalbasi R. Improving the efficiency of vacuum tube collectors using new absorbent tubes arrangement: introducing helical coil and spiral tube adsorbent tubes. Renew Energy. 2020;151:772–81. https://doi.org/10.1016/j.renene.2019.11.068.

    Article  Google Scholar 

  3. Afrand M, Kalbasi R, Karimipour A, Wongwises S. Experimental investigation on a thermal model for a basin solar still with an external reflector. Energies. 2017;10(1):18.

    Article  Google Scholar 

  4. Kalbasi R, Alemrajabi AA, Afrand M. Thermal modeling and analysis of single and double effect solar stills: an experimental validation. Appl Therm Eng. 2018;129:1455–65. https://doi.org/10.1016/j.applthermaleng.2017.10.012.

    Article  Google Scholar 

  5. Li Y, Kalbasi R, Nguyen Q, Afrand M. Effects of sonication duration and nanoparticles concentration on thermal conductivity of silica-ethylene glycol NF under different temperatures: an experimental study. Powder Technol. 2020;367:464–73. https://doi.org/10.1016/j.powtec.2020.03.058.

    Article  CAS  Google Scholar 

  6. Wei H, Afrand M, Kalbasi R, Ali HM, Heidarshenas B, Rostami S. The effect of tungsten trioxide nanoparticles on the thermal conductivity of ethylene glycol under different sonication durations: an experimental examination. Powder Technol. 2020;374:462–9. https://doi.org/10.1016/j.powtec.2020.07.056.

    Article  CAS  Google Scholar 

  7. Yan S-R, Kalbasi R, Karimipour A, Afrand M. Improving the thermal conductivity of paraffin by incorporating MWCNTs nanoparticles. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09819-0.

    Article  Google Scholar 

  8. Kalbasi R, Izadi F, Talebizadehsardari P. Improving performance of AHU using exhaust air potential by applying exergy analysis. J Therm Anal Calorim. 2020;139(4):2913–23. https://doi.org/10.1007/s10973-019-09198-1.

    Article  CAS  Google Scholar 

  9. Kalbasi R, Ruhani B, Rostami S. Energetic analysis of an air handling unit combined with enthalpy air-to-air heat exchanger. J Therm Anal Calorim. 2020;139(4):2881–90. https://doi.org/10.1007/s10973-019-09158-9.

    Article  CAS  Google Scholar 

  10. Yari M, Kalbasi R, Talebizadehsardari P. Energetic-exergetic analysis of an air handling unit to reduce energy consumption by a novel creative idea. Int J Numer Methods Heat Fluid Flow. 2019;29(10):3959–75. https://doi.org/10.1108/HFF-09-2018-0524.

    Article  Google Scholar 

  11. Alsagri AS. Design and dynamic simulation of a photovoltaic thermal-organic Rankine cycle considering heat transfer between components. Energy Convers Manage. 2020;1(225):113435.

    Article  Google Scholar 

  12. Alsagri AS, Chiasson A, Gadalla M. Viability assessment of a concentrated solar power tower with a supercritical CO2 Brayton cycle power plant. J Sol Energy Eng. 2019;141(5):051006.

    Article  Google Scholar 

  13. Parsa SM, Javadi D, Rahbar A, Majidniya M, Aberoumand S, Amidpour Y, Amidpour M. Experimental assessment on passive solar distillation system on Mount Tochal at the height of 3964 m: Study at high altitude. Desalination. 2019;466:77–88.

    Article  CAS  Google Scholar 

  14. Alsagri AS. Energy performance enhancement of solar thermal power plants by solar parabolic trough collectors and evacuated tube collectors-based preheating units. Int J Energy Res. 2020;44:6828–42.

    Article  CAS  Google Scholar 

  15. Ghalandari M, Maleki A, Haghighi A, Safdari Shadloo M, Alhuyi Nazari M, Tlili I. Applications of NFs containing carbon nanotubes in solar energy systems: a review. J Mol Liq. 2020;313:113476.

    Article  CAS  Google Scholar 

  16. Alsagri AS, Alrobaian AA, Almohaimeed SA. Concentrating solar collectors in absorption and adsorption cooling cycles: AN overview. Energy Convers Manag. 2020;1(223):113420.

    Article  Google Scholar 

  17. Parsa SM, Javadi D, Rahbar A, Majidniya M, Salimi M, Amidpour Y, Amidpour M. Experimental investigation at a summit above 13,000ft on active solar still water purification powered by photovoltaic: a comparative study. Desalination. 2020;476:114146.

    Article  CAS  Google Scholar 

  18. Alsagri AS, Arabkoohsar A, Khosravi M, Alrobaian AA. Efficient and cost-effective district heating system with decentralized heat storage units, and triple-pipes. Energy. 2019;1(188):116035.

    Article  Google Scholar 

  19. Parsa SM, Rahbar A, Javadi D, Koleini MH, Afrand M, Amidpour M. Energy-matrices, exergy, economic, environmental, exergoeconomic, enviroeconomic, and heat transfer (6E/HT) analysis of two passive/active solar still water desalination nearly 4000m: altitude concept. J Clean Prod. 2020;261:121243.

    Article  Google Scholar 

  20. Karimi A, Afrand M. Numerical study on thermal performance of an air-cooled heat exchanger: effects of hybrid NF, pipe arrangement and cross section. Energy Convers Manag. 2018;164:615–28.

    Article  CAS  Google Scholar 

  21. Rahimi M, Reza Shabanian S, Alsairafi AA. Experimental and CFD studies on heat transfer and friction factor characteristics of a tube equipped with modified twisted tape inserts. Chem Eng Process. 2009;48(3):762–70.

    Article  CAS  Google Scholar 

  22. Krishna SR, Pathipaka G, Sivashanmugam P. Heat transfer and pressure drop studies in a circular tube fitted with straight full twist. Exp Therm Fluid Sci. 2009;33(3):431–8.

    Article  Google Scholar 

  23. Sivashanmugam P, Nagarajan PK. Studies on heat transfer and friction factor characteristics of laminar flow through a circular tube fitted with right and left helical screw-tape inserts. Exp Therm Fluid Sci. 2007;32(1):192–7.

    Article  CAS  Google Scholar 

  24. Sivashanmugam P, Nagarajan PK, Suresh S. Experimental studies on heat transfer and friction factor characteristics in turbulent flow through a circular tube fitted with right-left helical screw-tape inserts. Chem Eng Commun. 2008;195:977–87.

    Article  CAS  Google Scholar 

  25. Saha SK, Gaitonde UN, Date AW. Heat transfer and pressure drop characteristics of turbulent flow in a circular tube fitted with regularly spaced twisted-tape elements. Exp Therm Fluid Sci. 1990;3(6):632–40.

    Article  Google Scholar 

  26. Saha SK, Dutta A, Dhal SK. Friction and heat transfer characteristics of laminar swirl flow through a circular tube fitted with regularly spaced twisted-tape elements. Int J Heat Mass Transf. 2001;44(22):4211–23.

    Article  Google Scholar 

  27. Eiamsa-ard S, Kiatkittipong K. Heat transfer enhancement by multiple twisted tape inserts and TiO2/water NF. Appl Therm Eng. 2014;70(1):896–924.

    Article  CAS  Google Scholar 

  28. Chen L, Jafaryar M, Shafee A, Nasir-Dara R, Tlili I, Li Z. Effect of complex turbulator on heat transfer of nanomaterial considering turbulent flow. Microsyst Technol. 2020;26:739–49.

    Article  CAS  Google Scholar 

  29. Ahmad UK, Hasreen M, Yahaya NA, Rosnadiah B. Comparative study of heat transfer and friction factor characteristics of NFs in rectangular channel. Proc Eng. 2017;170:541–6.

    Article  CAS  Google Scholar 

  30. Awan SE, Khan ZA, Awais M, Rehman SU, Raja MAZ. Numerical treatment for hydro-magnetic unsteady channel flow of NF with heat transfer. Results Phys. 2018;9(2018):1543–54.

    Article  Google Scholar 

  31. Parsaiemehr M, Pourfattah F, Akbari OA, Toghraie D, Sheikhzadeh G. Turbulent flow and heat transfer of Water/Al2O3 NF inside a rectangular ribbed channel. Phys E. 2018;96:73–84.

    Article  CAS  Google Scholar 

  32. Sheikholeslami M, Shehzad SA, Li Z. NF heat transfer intensification in a permeable channel due to magnetic field using lattice Boltzmann method. Phys B. 2018;542:51–8.

    Article  CAS  Google Scholar 

  33. Bezaatpour M, Goharkhah M. Three dimensional simulation of hydrodynamic and heat transfer behavior of magnetite NF flow in circular and rectangular channel heat sinks filled with porous media. Powder Technol. 2019;344:68–78.

    Article  CAS  Google Scholar 

  34. Ma Y, Mohebbi R, Rashidi MM, Yang Z. MHD convective heat transfer of Ag–MgO/water hybrid NF in a channel with active heaters and coolers. Int J Heat Mass Transf. 2019;137:714–26.

    Article  CAS  Google Scholar 

  35. Shi X, Jaryani P, Amiri A, Rahimi A, Malekshah EH. Heat transfer and NF flow of free convection in a quarter cylinder channel considering nanoparticle shape effect. Powder Technol. 2019;346:160–70.

    Article  CAS  Google Scholar 

  36. Ajeel RK, Salim WSI, Sopian K, Yusoff MZ, Hasnan K, Ibrahim A, Al-Waeli AHA. Turbulent convective heat transfer of silica oxide NF through corrugated channels: an experimental and numerical study. Int J Heat Mass Transf. 2019;145:118806.

    Article  CAS  Google Scholar 

  37. Mashayekhi R, Arasteh H, Toghraie D, Motaharpour SH, Keshmiri A, Afrand M. Heat transfer enhancement of Water-Al2O3 NF in an oval channel equipped with two rows of twisted conical strip inserts in various directions: a two-phase approach. Comput Math Appl. 2020;79(8):2203–15.

    Article  Google Scholar 

  38. Rehman WU, Merican ZMA, Bhat AH, Hoe BG, Sulaimon AA, Akbarzadeh O, Khan MS, Mukhtar A, Saqib S, Hameed A, Mellon N, Ullah H, Ullah S, Assiri MA. Synthesis, characterization, stability and thermal conductivity of multi-walled carbon nanotubes (MWCNTs) and eco-friendly jatropha seed oil based NF: an experimental investigation and modeling approach. J Mol Liq. 2019;293:111534.

    Article  CAS  Google Scholar 

  39. Patankar SV. Numerical heat transfer and fluid flow. London: Taylor and Francis Group; 1980.

    Google Scholar 

  40. Salari A, Kazemian A, Ma T, Hakkaki-Fard A, Peng J. NF based photovoltaic thermal systems integrated with phase change materials: Numerical simulation and thermodynamic analysis. Energy Convers Manag. 2020;205:112384.

    Article  CAS  Google Scholar 

  41. Al-Ansary H, Zeitoun O. Numerical study of conduction and convection heat losses from a half-insulated air-filled annulus of the receiver of a parabolic trough collector. Sol Energy. 2011;85(11):3036–45.

    Article  Google Scholar 

  42. Abbasian Arani AA, Sadripour S, Kermani S. Nanoparticle shape effects on thermal-hydraulic performance of boehmite alumina NFs in a sinusoidal-wavy mini-channel with phase shift and variable wavelength. Int J Mech Sci. 2017;128–129:550–63.

    Article  Google Scholar 

  43. Sadripour S. 3D numerical analysis of atmospheric-aerosol/carbon-black NF flow within a solar air heater located in Shiraz, Iran. Int J Numer Methods Heat Fluid Flow. 2018. https://doi.org/10.1108/HFF-04-2018-0169.

    Article  Google Scholar 

  44. Sadripour S, Chamkha AJ. The effect of nanoparticle morphology on heat transfer and entropy generation of supported NFs in a heat sink solar collector. Therm Sci Eng Prog. 2019;9:266–80.

    Article  Google Scholar 

  45. Kim D, Kwon Y, Cho Y, Li C, Cheong S, Hwang Y, Lee J, Hong D, Moon S. Convective heat transfer characteristics of NFs under laminar and turbulent flow conditions. Curr Appl Phys. 2009;9(2):119–23.

    Article  Google Scholar 

  46. Giwa SO, Sharifpur M, Meyer JP. Experimental study of thermo-convection performance of hybrid NFs of Al2O3–MWCNT/water in a differentially heated square cavity. Int J Heat Mass Transf. 2020;148:119072.

    Article  CAS  Google Scholar 

  47. Leong WH, Hollands KGT, Brunger AP. Experimental nusselt numbers for a cubical-cavity benchmark problem in natural convection. Int J Heat Mass Transf. 1998;42:1979–89.

    Article  Google Scholar 

  48. Komeilibirjandi A, Raffiee AH, Maleki A, Nazari MA, Shadloo MS. Thermal conductivity prediction of NFs containing CuO nanoparticles by using correlation and artificial neural network. J Therm Anal Calorim. 2019;139:2679–89.

    Article  Google Scholar 

  49. Zheng Y, Shadloo MS, Nasiri H, Maleki A, Karimipour A, Tlili I. Prediction of viscosity of biodiesel blends using various artificial model and comparison with empirical correlations. Renew Energy. 2020;153:1296–306.

    Article  CAS  Google Scholar 

  50. Maleki A, Safdari Shadloo M, Rahmat A. Application of artificial neural networks for producing an estimation of high-density polyethylene. Polymers. 2020;12:2319.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under grant no. (RG-25-135-38). The authors, therefore, acknowledge with thanks DSR technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dumitru Baleanu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abu-Hamdeh, N.H., Almitani, K.H., Gari, A.A. et al. Hydrodynamic analysis of a heat exchanger with crosscut twisted tapes and filled with thermal oil-based SWCNT nanofluid: applying ANN for prediction of objective parameters. J Therm Anal Calorim 145, 2163–2176 (2021). https://doi.org/10.1007/s10973-020-10521-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10521-4

Keywords

Navigation