Skip to main content
Log in

Ceramic properties of kaolinitic clay with monoaluminum phosphate (Al(H2PO4)3) addition

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The effect of monoaluminum phosphate (Al(H2PO4)3) addition in the thermochemical process of a kaolinitic clay was studied and compared with the pure clay. Monoaluminum phosphate incorporation is of technological interest for the widely use of this material as an effective binder. From this point of view is important to clarify the processing strategy of kaolinitic clay-MAP based ceramics. This work comprised the characteristics of the obtained ceramics using differential thermal analysis, thermogravimetric analysis (TG), dilatometric analysis, X-ray powder diffraction with Rietveld refinement, mechanical resistance and textural properties. The addition of MAP did not affect the temperature of the kaolinite dehydroxilation (600–500 °C) but reduced this transformation as it was observed in TG curve. The amount of mullite decreased and cristobalite formation was stimulated with MAP presence in the samples fired at 1400 °C. Mullite cell parameters were not modified. The present study gives information for further clay-based materials designed with MAP. It can be concluded that the incorporation of low percentages of MAP in the potential formulation of technological ceramics would not imply important changes in the macroscopic properties of these type of ceramic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chakraborty AK. Phase transformation of kaolinite clay. New Delhi: Springer; 2014.

    Book  Google Scholar 

  2. Dondi M, Raimondo M, Zanelli C. Clays and bodies for ceramic tiles: reappraisal and technological classification. Appl Clay Sci. 2014;96:91–109.

    Article  CAS  Google Scholar 

  3. Schroeder PA, Erickson G. Kaolin: from ancient porcelains to nanocomposites. Elements. 2014;10:177–82.

    Article  CAS  Google Scholar 

  4. Konta J. Clay and man: clay raw materials in the service of man. Appl Clay Sci. 1995;10:275–335.

    Article  CAS  Google Scholar 

  5. Andrini L, Gauna MR, Conconi MS, Suarez G, Requejo G, Aglietti EF, et al. Extended and local structural description of a kaolinitic clay, its fired ceramics and intermediates: an XRD and XANES analysis. Appl Clay Sci. 2016;124–125:39–45.

    Article  Google Scholar 

  6. Torres Sánchez RM, Basaldella EI, Marco JF. The effect of thermal and mechanical treatments on kaolinite: characterization by XPS and IEP measurements. J Colloid Interface Sci. 1999;215:339–44.

    Article  Google Scholar 

  7. Hernández MF, Violini MA, Serra MF, et al. Boric acid (H3BO3) as flux agent of clay-based ceramics, B2O3 effect in clay thermal behavior and resultant ceramics properties. J Therm Anal Calorim. 2020;139:1717–29.

    Article  Google Scholar 

  8. Ondruška J, Csáki Š, Štubňa I, et al. Investigation of kaolin–quartz mixtures during heating using thermodilatometry and DC thermoconductometry. J Therm Anal Calorim. 2020;139:833–8.

    Article  Google Scholar 

  9. Al-Shantir O, Csáki Š, Ondro T, et al. Mechanical-acoustic study of electroporcelain mixture made under different compression pressures. J Therm Anal Calorim. 2020;142(5):1759–66.

    Article  CAS  Google Scholar 

  10. Chen D, He L, Shang S. Study on aluminum phosphate binder and related Al2O3–SiC ceramic coating. Mater Sci Eng. 2003;348:29–35.

    Article  Google Scholar 

  11. Kingery WD. Fundamental study of phosphate bonding in refractories: I, literature review. J Am Ceram Soc. 1950;33:239–41.

    Article  CAS  Google Scholar 

  12. Vippola M, et al. Structural characterization of aluminum phosphate binder. J Am Ceram Soc. 2000;83:1834–6.

    Article  CAS  Google Scholar 

  13. Sahnoun RD, Bouaziz J. Sintering characteristics of kaolin in the presence of phosphoric acid binder. Ceram Int. 2012;38:1–7.

    Article  Google Scholar 

  14. Luz AP, Gomes DT, Pandolfelli VC. High-alumina phosphate-bonded refractory castables: Al(OH)3 sources and their effects. Ceram Int. 2015;41:9041–50.

    Article  CAS  Google Scholar 

  15. Hipedinger NE, Scian AN, Aglietti EF. Magnesia-phosphate bond for cold-setting cordierite-based refractories. Cem Concr Res. 2002;32:675–82.

    Article  CAS  Google Scholar 

  16. Colonetti E, Hobold Kammer E, De Noni JA. Chemically-bonded phosphate ceramics obtained from aluminum anodizing waste for use as coatings. Ceram Int. 2014;40:14431–8.

    Article  CAS  Google Scholar 

  17. Wang YS, Dai JG, Ding Z, Xu mass% Phosphate-based geopolymer: formation mechanism and thermal stability. Mater Lett. 2017;190:209–12.

    Article  CAS  Google Scholar 

  18. Almanza RJM, Castillejos EAH, Acosta GFA, Flores VA. Microstructure and properties characterization of a new ceramic filter —CEFILPB. Mater Des. 1994;15:135–40.

    Article  Google Scholar 

  19. Mocciaro A, Lombardi MB, Scian AN. Effect of raw material milling on ceramic proppants properties. Appl Clay Sci. 2018;153:90–4.

    Article  CAS  Google Scholar 

  20. Morris JH, Perkins PG, Rose AEA, Smith WE. The chemistry and binding properties of aluminium phosphates. Chem Soc Rev. 1977;6:173–94.

    Article  CAS  Google Scholar 

  21. Almanza RJM, Castillejos EAH, Acosta GFA, Flores VA. Microstructure and properties characterization of a new ceramic filter CEFILPB. Mater Des. 1994;15:135–40.

    Article  Google Scholar 

  22. Zulkifly K, et al. 2020 Thermal exposure of fly ash-metakaolin blend geopolymer with addition of monoaluminum phosphate (MAP). In: IOP Conf. Ser.: Mater. Sci. Eng. https://doi.org/10.1088/1757-899X/864/1/012011.

  23. Dominguez E, Cravero F. Los recursos de caolín de Chubut y Santa Cruz. Recur Miner Repub Argent. Zappettini E.O. Argentina: Instituto de Geología y Recursos Minerales. Secretaría de Estado de Geología y Minería de Argentina; 1999. pp. 1265–1272.

  24. Rietveld HM. A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr. 1969;2:65–71.

    Article  CAS  Google Scholar 

  25. Le Bail A. Modelling the silica glass structure by the Rietveld method. J Non Cryst Solids. 1995;183:39–42.

    Article  Google Scholar 

  26. Hernández MF, Conconi MS, Cipollone M, Herrera MS, Rendtorff NM. Ceramic behavior of ball clay with gadolinium oxide (Gd2O3) addition. Appl Clay Sci. 2017;146:380–7.

    Article  Google Scholar 

  27. Xu X, et al. Microstructural evolution, phase transformation, and variations in physical properties of coal series kaolin powder compact during firing. Appl Clay Sci. 2015;115:76–86.

    Article  CAS  Google Scholar 

  28. Okada K, Otsuka N, Ossaka J. Characterization of spinel phase formed in the kaolin-mullite thermal sequence. J Am Ceram Soc. 1986;69:C251–3.

    Article  CAS  Google Scholar 

  29. Ptáček P, et al. The kinetics and mechanism of kaolin powder sintering I. The dilatometric CRH study of sinter-crystallization of mullite and cristobalite. Powder Technol. 2012;232:24–30.

    Article  Google Scholar 

  30. Zanelli C, Raimondo M, Guarini G, Dondi M. The vitreous phase of porcelain stoneware: composition, evolution during sintering and physical properties. J Non Cryst Solids. 2011;357:3251–60.

    Article  CAS  Google Scholar 

  31. Beck WR. Crystallographic inversions of the aluminum orthophosphate polymorphs and their relation to those of silica. J Am Ceram Soc. 1949;32:147–51.

    Article  CAS  Google Scholar 

  32. Kumar P, Tiwari AN, Bhargava P. Effect of process parameters and binder concentration on mechanical properties of phosphate bonded alumina. Trans Indian Ceram Soc. 2013;72:130–5.

    Article  CAS  Google Scholar 

  33. Butler MA, Dyson DJ. The quantification of different forms of cristobalite in devitrified alumino-silicate ceramic fibres. J Appl Crystallogr. 1997;30:467–75.

    Article  CAS  Google Scholar 

  34. Madsen IC, Finney RJ, Flann RCA, Frost MT, Wilson BW. Quantitative analysis of high-alumina refractories using X-ray powder diffraction data and the rietveld method. J Am Ceram Soc. 1991;74:619–24.

    Article  CAS  Google Scholar 

  35. Karlsson KH, Rönnlöf M. Property-composition relationships for potentially bioactive glasses. Glass Sci Technol (Frankfurt). 1998;71(5):141–5.

    CAS  Google Scholar 

  36. Herrera MS, Hernández MF, Cipollone M, Conconi MS, Rendtorff NM. Thermal behavior of samarium oxide—Ball clay mixtures for high macroscopic neutron capture cross section ceramic materials. Appl Clay Sci. 2019;168:125–35.

    Article  CAS  Google Scholar 

  37. Schneider H, Schreuer J, Hildmann B. Structure and properties of mullite—a review. J Eur Ceram Soc. 2008;28:329–44.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by CONICET. This work has been partially supported by Nano-Petro FONARSEC Project 2012 (ANPCyT). N.M.R. thanks FONCyT-BID PICT 2016-1193.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mocciaro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mocciaro, A., Conconi, M.S., Rendtorff, N.M. et al. Ceramic properties of kaolinitic clay with monoaluminum phosphate (Al(H2PO4)3) addition. J Therm Anal Calorim 144, 1083–1093 (2021). https://doi.org/10.1007/s10973-020-10488-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10488-2

Keywords

Navigation