Skip to main content
Log in

Thermal stability and mechanical behavior of technical bamboo fibers/bio-based polyamide composites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The objective of this research is to tailor composites with continuous bamboo fibers as reinforcement of a bio-based polyamide (RilsanXD). Using mild chemical and mechanical treatment, technical bamboo fibers were extracted from Phyllostachys viridiglaucescens. They have an average diameter of 397 µm. Their average tensile strength is 323 MPa, and their average Young modulus is 26 GPa. Single ply bamboo fibers/polyamide composites were processed. Gravimetric analyses show that polyamide allows mild processing conditions at 200 °C, therefore permitting to make composites without degrading the fibrous reinforcement. Composites composition was determined from peak analyses of the mass derivative curve associated with bamboo situated at 330 °C. Composites with 60 m % of bamboo fibers were prepared and analyzed. SEM images observation of cryo-cuts shows the absence of voids between technical fibers and polyamide matrix. The cohesion in shear was tested by dynamic mechanical analyses. Comparative data recorded on the bio-based polyamide and the 60/40 bamboo fibers/polyamide composite show a significant improvement of the shear glassy modulus which is multiplied by 1.6 at 20 °C. This result is consistent with the continuity of matter between bamboo fibers and polyamide observed by SEM. This effect may be due to a dense network of static hydrogen bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Elanchezhian C, Ramnath BV, Ramakrishnan G, Rajendrakumar M, Naveenkumar V, Saravanakumar MK. Review on mechanical properties of natural fiber composites. Mater Today Proc. 2018;5(1):1785–90. https://doi.org/10.1016/j.matpr.2017.11.276.

    Article  CAS  Google Scholar 

  2. Lau K-T, Hung P-Y, Zhu M-H, Hui D. Properties of natural fibre composites for structural engineering applications. Compos B Eng. 2018;136:222–33. https://doi.org/10.1016/j.compositesb.2017.10.038.

    Article  CAS  Google Scholar 

  3. Puglia D, Biagiotti J, Kenny JM. A review on natural fibre-based composites—Part II. J Nat Fibers. 2005;1(3):23–65. https://doi.org/10.1300/J395v01n03_03.

    Article  CAS  Google Scholar 

  4. Rao KMM, Rao KM. Extraction and tensile properties of natural fibers: Vakka, date and bamboo. Compos Struct. 2007;77(3):288–95. https://doi.org/10.1016/j.compstruct.2005.07.023.

    Article  Google Scholar 

  5. Kalia S, Dufresne A, Cherian BM, Kaith BS, Avérous L, Njuguna J, et al. Cellulose-based bio- and nanocomposites: a review. Int J Polym Sci. 2011;2011:1–35. https://doi.org/10.1155/2011/837875.

    Article  Google Scholar 

  6. Pickering KL, Efendy MGA, Le TM. A review of recent developments in natural fibre composites and their mechanical performance. Compos A Appl Sci Manuf. 2016;83:98–112. https://doi.org/10.1016/j.compositesa.2015.08.038.

    Article  CAS  Google Scholar 

  7. Dunne R, Desai D, Sadiku R, Jayaramudu J. A review of natural fibres, their sustainability and automotive applications. J Reinf Plast Compos. 2016;35(13):1041–50. https://doi.org/10.1177/0731684416633898.

    Article  CAS  Google Scholar 

  8. Armioun S, Panthapulakkal S, Scheel J, Tjong J, Sain M. Sustainable and lightweight biopolyamide hybrid composites for greener auto parts. Can J Chem Eng. 2016;94(11):2052–60. https://doi.org/10.1002/cjce.22609.

    Article  CAS  Google Scholar 

  9. Jakovljević S, Lisjak D, Alar Ž, Penava F. The influence of humidity on mechanical properties of bamboo for bicycles. Constr Build Mater. 2017;150:35–48. https://doi.org/10.1016/j.conbuildmat.2017.05.189.

    Article  Google Scholar 

  10. Nayak L, Mishra SP. Prospect of bamboo as a renewable textile fiber, historical overview, labeling, controversies and regulation. Fash Text. 2016;3(1):1–23. https://doi.org/10.1186/s40691-015-0054-5.

    Article  Google Scholar 

  11. Kelchner SA, Bamboo Phylogeny G. Higher level phylogenetic relationships within the bamboos (Poaceae: Bambusoideae) based on five plastid markers. Mol Phylogenet Evol. 2013;67(2):404–13. https://doi.org/10.1016/j.ympev.2013.02.005.

    Article  CAS  PubMed  Google Scholar 

  12. Krause JQ, de Andrade Silva F, Ghavami K, Gomes ODFM, Filho RDT. On the influence of Dendrocalamus giganteus bamboo microstructure on its mechanical behavior. Constr Build Mater. 2016;127:199–209. https://doi.org/10.1016/j.conbuildmat.2016.09.104.

    Article  CAS  Google Scholar 

  13. Judawisastra H, Sitohang RDR, Rosadi MS. Water absorption and tensile strength degradation of Petung bamboo (Dendrocalamus asper) fiber—reinforced polymeric composites. Mater Res Exp. 2017;4(9):094003. https://doi.org/10.1088/2053-1591/aa8a0d.

    Article  CAS  Google Scholar 

  14. Rassiah K, Megat Ahmad MMH, Ali A. Mechanical properties of laminated bamboo strips from Gigantochloa Scortechinii/polyester composites. Mater Des. 2014;57:551–9. https://doi.org/10.1016/j.matdes.2013.12.070.

    Article  CAS  Google Scholar 

  15. Posada JC, Jaramillo LY, Cadena EM, García LA. Bio-based composites from agricultural wastes: polylactic acid and bamboo Guadua angustifolia. J Compos Mater. 2016;50(23):3229–37. https://doi.org/10.1177/0021998315616274.

    Article  CAS  Google Scholar 

  16. Abdul Khalil HPS, Bhat IUH, Jawaid M, Zaidon A, Hermawan D, Hadi YS. Bamboo fibre reinforced biocomposites: a review. Mater Des. 2012;42:353–68. https://doi.org/10.1016/j.matdes.2012.06.015.

    Article  CAS  Google Scholar 

  17. Liu D, Song J, Anderson DP, Chang PR, Hua Y. Bamboo fiber and its reinforced composites: structure and properties. Cellulose. 2012;19(5):1449–80. https://doi.org/10.1007/s10570-012-9741-1.

    Article  CAS  Google Scholar 

  18. Trujillo E, Moesen M, Osorio L, Van Vuure AW, Ivens J, Verpoest I. Bamboo fibres for reinforcement in composite materials: strength Weibull analysis. Compos A Appl Sci Manuf. 2014;61:115–25. https://doi.org/10.1016/j.compositesa.2014.02.003.

    Article  CAS  Google Scholar 

  19. Liu W, Qiu R, Li K. Effects of fiber extraction, morphology, and surface modification on the mechanical properties and water absorption of bamboo fibers-unsaturated polyester composites. Polym Compos. 2016;37(5):1612–9. https://doi.org/10.1002/pc.23333.

    Article  CAS  Google Scholar 

  20. Prasanna Venkatesh R, Ramanathan K, Srinivasa Raman V. Tensile, flexual, impact and water absorption properties of natural fibre reinforced polyester hybrid composites. Fibres Text East Eur. 2016;24(1):115. https://doi.org/10.5604/12303666.1196617.

    Article  CAS  Google Scholar 

  21. Das M, Chakraborty D. The effect of alkalization and fiber loading on the mechanical properties of bamboo fiber composites, Part 1: polyester resin matrix. J Appl Polym Sci. 2009;112(1):489–95. https://doi.org/10.1002/app.29342.

    Article  CAS  Google Scholar 

  22. Glória GO, Margem FM, Ribeiro CGD, Moraes YMD, Cruz RBD, Silva FDA, et al. Charpy impact tests of epoxy composites reinforced with giant bamboo fibers. Mater Res. 2015;18(suppl 2):178–84. https://doi.org/10.1590/1516-1439.360614.

    Article  Google Scholar 

  23. Shin FG, Xian XJ, Zheng WP, Yipp MW. Analyses of the mechanical properties and microstructure of bamboo epoxy composites. J Mater Sci. 1989;24:3483–90.

    Article  CAS  Google Scholar 

  24. Zhang K, Wang F, Liang W, Wang Z, Duan Z, Yang B. Thermal and mechanical properties of bamboo fiber reinforced epoxy composites. Polymers. 2018;10(6):1–9. https://doi.org/10.3390/polym10060608.

    Article  CAS  Google Scholar 

  25. Tokoro R, Vu DM, Okubo K, Tanaka T, Fujii T, Fujiura T. How to improve mechanical properties of polylactic acid with bamboo fibers. J Mater Sci. 2007;43(2):775–87. https://doi.org/10.1007/s10853-007-1994-y.

    Article  CAS  Google Scholar 

  26. Yusoff RB, Takagi H, Nakagaito AN. Tensile and flexural properties of polylactic acid-based hybrid green composites reinforced by kenaf, bamboo and coir fibers. Ind Crops Prod. 2016;94:562–73. https://doi.org/10.1016/j.indcrop.2016.09.017.

    Article  CAS  Google Scholar 

  27. Fazita MRN, Jayaraman K, Bhattacharyya D. Formability analysis of bamboo fabric reinforced poly (lactic) acid composites. Materials (Basel). 2016;9(7):539. https://doi.org/10.3390/ma9070539.

    Article  CAS  Google Scholar 

  28. Haddou G, Dandurand J, Dantras E, Maiduc H, Thai H, Giang NV, et al. Physical structure and mechanical properties of polyamide/bamboo composites. J Therm Anal Calorim. 2017;129(3):1463–9. https://doi.org/10.1007/s10973-017-6297-1.

    Article  CAS  Google Scholar 

  29. Winnacker M, Rieger B. Biobased polyamides: recent advances in basic and applied research. Macromol Rapid Commun. 2016;37(17):1391–413. https://doi.org/10.1002/marc.201600181.

    Article  CAS  PubMed  Google Scholar 

  30. Negrell C, Frénéhard O, Sonnier R, Dumazert L, Briffaud T, Flat J-J. Self-extinguishing bio-based polyamides. Polym Degrad Stab. 2016;134:10–8. https://doi.org/10.1016/j.polymdegradstab.2016.09.022.

    Article  CAS  Google Scholar 

  31. Ohrnberger D. The bamboos of the world: Bambus Buch. Amsterdam: Elsevier; 1996.

    Google Scholar 

  32. Depuydt DEC, Sweygers N, Appels L, Ivens J, van Vuure AW. Bamboo fibres sourced from three global locations: a microstructural, mechanical and chemical composition study. J Reinf Plast Compos. 2019;38(9):397–412. https://doi.org/10.1177/0731684419828532.

    Article  CAS  Google Scholar 

  33. Rocky BPTAJ. Production of natural bamboo fibers-1: experimental approaches to different processes and analyses. J Text Inst. 2018;109:1381–91. https://doi.org/10.1080/00405000.2018.1482639.

    Article  CAS  Google Scholar 

  34. Zakikhani P, Zahari R, Sultan MTH, Majid DL. Extraction and preparation of bamboo fibre-reinforced composites. Mater Des. 2014;63:820–8. https://doi.org/10.1016/j.matdes.2014.06.058.

    Article  CAS  Google Scholar 

  35. Chen H, Yu Y, Zhong T, Wu Y, Li Y, Wu Z, et al. Effect of alkali treatment on microstructure and mechanical properties of individual bamboo fibers. Cellulose. 2016;24(1):333–47. https://doi.org/10.1007/s10570-016-1116-6.

    Article  CAS  Google Scholar 

  36. Kabir MM, Wang H, Lau KT, Cardona F. Chemical treatments on plant-based natural fibre reinforced polymer composites: an overview. Compos B Eng. 2012;43(7):2883–92. https://doi.org/10.1016/j.compositesb.2012.04.053.

    Article  CAS  Google Scholar 

  37. Yang X, Wang K, Tian G, Xe Liu, Yang S. Evaluation of chemical treatments to tensile properties of cellulosic bamboo fibers. Eur J Wood Wood Prod. 2018;76(4):1303–10. https://doi.org/10.1007/s00107-018-1303-2.

    Article  CAS  Google Scholar 

  38. Chen J-H, Wang K, Xu F, Sun R-C. Effect of hemicellulose removal on the structural and mechanical properties of regenerated fibers from bamboo. Cellulose. 2014;22(1):63–72. https://doi.org/10.1007/s10570-014-0488-8.

    Article  CAS  Google Scholar 

  39. Budtova T, Navard P. Cellulose in NaOH–water based solvents: a review. Cellulose. 2015;23(1):5–55. https://doi.org/10.1007/s10570-015-0779-8.

    Article  CAS  Google Scholar 

  40. Haddou G, Roggero A, Dandurand J, Dantras E, Ponteins P, Lacabanne C. Dynamic relaxations in a bio-based polyamide with enhanced mechanical modulus. J Appl Polym Sci. 2018;135(47):1–6. https://doi.org/10.1002/app.46846.

    Article  CAS  Google Scholar 

  41. Osorio L, Trujillo E, Van Vuure AW, Verpoest I. Morphological aspects and mechanical properties of single bamboo fibers and flexural characterization of bamboo/epoxy composites. J Reinf Plast Compos. 2011;30(5):396–408. https://doi.org/10.1177/0731684410397683.

    Article  CAS  Google Scholar 

  42. Tsai SW. Structural behavior of composite materials. NASA CR-71. 1964.

  43. Mamleev V, Bourbigot S, Yvon J. Kinetic analysis of the thermal decomposition of cellulose: the main step of mass loss. J Anal Appl Pyrol. 2007;80(1):151–65. https://doi.org/10.1016/j.jaap.2007.01.013.

    Article  CAS  Google Scholar 

  44. Gogoi M, Konwar K, Bhuyan N, Borah RC, Kalita AC, Nath HP, et al. Assessments of pyrolysis kinetics and mechanisms of biomass residues using thermogravimetry. Bioresour Technol Rep. 2018;4:40–9. https://doi.org/10.1016/j.biteb.2018.08.016.

    Article  Google Scholar 

  45. Yang H, Yan R, Chen H, Lee DH, Zheng C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 2007;86(12–13):1781–8. https://doi.org/10.1016/j.fuel.2006.12.013.

    Article  CAS  Google Scholar 

  46. Zakikhani P, Zahari R, Sultan MTH, Majid DL. Thermal degradation of four bamboo species. BioResources. 2016;11:414–25.

    Article  CAS  Google Scholar 

  47. Haddou G, Dandurand J, Dantras E, Maiduc H, Thai H, Giang NV, et al. Mechanical properties of continuous bamboo fiber-reinforced biobased polyamide 11 composites. J Appl Polym Sci. 2019. https://doi.org/10.1002/app.47623.

    Article  Google Scholar 

  48. Bensadoun F, Verpoest I, Baets J, Müssig J, Graupner N, Davies P, et al. Impregnated fibre bundle test for natural fibres used in composites. J Reinf Plast Compos. 2017;36(13):942–57. https://doi.org/10.1177/0731684417695461.

    Article  CAS  Google Scholar 

  49. Adams DF, Tsai SW. The influence of random filament packing on the elastic properties of composite materials. J Compos Mater. 1969;3:14.

    Google Scholar 

Download references

Acknowledgements

This research was done in the framework of the FUI-24 BAmboo continuous fiber reinforced bio-based Matrices COmposites program (BAMCO) supported by the Région Occitanie/France, the Région Normandie/France and Bpifrance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Dantras.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lods, L., Richmond, T., Dandurand, J. et al. Thermal stability and mechanical behavior of technical bamboo fibers/bio-based polyamide composites. J Therm Anal Calorim 147, 1097–1106 (2022). https://doi.org/10.1007/s10973-020-10445-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10445-z

Keywords

Navigation