Skip to main content
Log in

MHD double-diffusive mixed convection of binary nanofluids through a vertical porous annulus considering Buongiorno’s two-phase model

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Binary nanofluids are prepared using a binary liquid (e.g., salt water) instead of a pure liquid as their host fluid. Double-diffusive convection in this type of nanofluids is a kind of triple-diffusive process, which simultaneously includes diffusions of heat, nanoparticles, and solute. This paper is devoted to double-diffusive mixed convection of binary nanofluids flowing through a vertical porous annulus in the presence of an externally applied radial magnetic field. To simulate the problem, a new mathematical model following the Buongiorno’s two-phase model is proposed. The equations are solved numerically by means of the finite-volume method. Thereafter, effects of the involved dimensionless variables on the distributions of stream function, temperature, solute concentration, and nanoparticles fraction as well as the mean values of the Nusselt number and the solute Sherwood number are presented and discussed. Inspection of the results demonstrates the significant contributions of the Peclet number (Pe), the usual Lewis number (Le), and the Soret-solute Lewis number (Ld) on the simulation results. In spite of that, the effects of the Hartmann number (Ha) and the thermophoresis parameter (Nt) on the simulation results are weak, while the consequences of the nanofluid Lewis number (Ln), the double-diffusive ratio (Nc), the buoyancy ratio (Nr), and the Dufour parameter (Nd) on the Nusselt and Sherwood numbers are insignificant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

B :

Magnetic field vector (T), \({\mathbf{B}} = {\text{B}}_{0} {\mathbf{e}}_{{{\bar{\mathbf{r}}}}}\)

\(c_{\text{p}}\) :

Specific heat \(({\text{J}}\,{\text{kg}}^{ - 1} \,{\text{K}}^{ - 1} )\)

\(D_{\text{B}}\) :

Brownian diffusion coefficient \(({\text{m}}^{2} \,\,{\text{s}}^{ - 1} )\)

\(D_{\text{CT}}\) :

Diffusivity of the Soret type \(({\text{m}}^{2} \,{\text{s}}^{ - 1} )\)

\(D_{\text{sm}}\) :

Solute diffusivity for the porous medium \(({\text{m}}^{2} \,\,{\text{s}}^{ - 1} )\)

\(D_{\text{TC}}\) :

Diffusivity of the Dufour type \(({\text{m}}^{2} \,{\text{s}}^{ - 1} )\)

\(D_{\text{T}}\) :

Thermophoretic diffusion coefficient \(({\text{m}}^{2} \,\,{\text{s}}^{ - 1} )\)

\({\mathbf{e}}_{{{\bar{\mathbf{r}}}}} ,{\mathbf{e}}_{{{\bar{\mathbf{z}}}}}\) :

Unit vectors in the cylindrical coordinate system

\({\mathbf{g}}\) :

Gravitational acceleration vector \(({\text{m}}\,{\text{s}}^{ - 2} )\), \({\mathbf{g}} = - {\text{g}}{\mathbf{e}}_{{{\bar{\mathbf{z}}}}}\)

H :

Height of the domain (m)

Ha :

Hartmann number

\({\mathbf{j}}_{\text{p}}\) :

Nanoparticles mass flux \(({\text{kg}}\,{\text{m}}^{ - 1} \,{\text{s}}^{ - 1} )\)

K :

Permeability (m2)

k :

Thermal conductivity \(({\text{W}}\,{\text{m}}^{ - 1} \,{\text{K}}^{ - 1} )\)

L :

Width of the domain (m)

Ld:

Soret-solute Lewis number

Le:

Usual Lewis number

Ln:

Nanofluid Lewis number

Nb:

Brownian diffusion parameter

Nc:

Double-diffusive ratio

Nd:

Dufour parameter

Nd:

Buoyancy ratio

Nt:

Thermophoresis parameter

Nu:

Local Nusselt number

\(\overline{\text{Nu}}\) :

Mean Nusselt number

p :

Pressure (Pa)

Pe:

Peclet number

Ra:

Rayleigh number

\({\bar{\text{S}}}\) :

Solute concentration

\(\overline{{{\text{S}}_{\text{c}} }}\) :

Solute concentration in the incoming flow

\({\text{S}}\) :

Dimensionless solute concentration

\({\text{Sh}}_{\text{S}}\) :

Local Sherwood number of the solute

\(\overline{\text{Sh}}_{\text{S}}\) :

Mean Sherwood number of the solute

\({\text{Sh}}_{\Phi }\) :

Local Sherwood number of the nanoparticles

\(\overline{\text{Sh}}_{\Phi }\) :

Mean Sherwood number of the nanoparticles

t :

Time (s)

T :

Temperature (K)

\(u,w\) :

Velocity components in the cylindrical coordinate system \(({\text{m}}\,{\text{s}}^{ - 1} )\)

V :

Velocity vector \(({\text{m}}\,{\text{s}}^{ - 1} )\)

\(\bar{r}, \bar{z}\) :

Cylindrical coordinates (m)

\(r,z\) :

Dimensionless cylindrical coordinates

\(\alpha\) :

Thermal diffusivity \(({\text{m}}^{2} \,{\text{s}}^{ - 1} )\)

\(\beta_{\text{T}}\) :

Thermal expansion coefficient \(\left( {{\text{K}}^{ - 1} } \right)\)

\(\beta_{\text{S}}\) :

Solute concentration expansion coefficient

\(\delta\) :

Constant coefficient, \(\varepsilon \left( {\rho c} \right)_{\text{P}} /\left( {\rho c} \right)_{\text{f}}\)

ε :

Porosity

\(\bar{\varPhi }\) :

Nanoparticles fraction

\(\bar{\varPhi }_{0}\) :

Nanoparticles fraction in the incoming flow

\(\varPhi\) :

Dimensionless nanoparticles fraction

\(\mu\) :

Dynamic viscosity \(({\text{N}}\,{\text{s}}\,{\text{m}}^{ - 2} )\)

\({{\varTheta }}\) :

Dimensionless temperature

ρ :

Density \(({\text{kg}}\,{\text{m}}^{ - 3} )\)

\(\sigma\) :

Electrical conductivity \(({{\varOmega }}^{ - 1} \,{\text{m}}^{ - 1} )\)

\({{\psi }}\) :

Stream function \(({\text{m}}^{2} \,{\text{s}}^{ - 1} )\)

\(\varPsi\) :

Dimensionless stream function

\(\omega\) :

Constant coefficient, \(\omega = \left( {\rho c_{\text{p}} } \right)_{\text{m}} /\left( {\rho c_{\text{p}} } \right)_{\text{f}}\)

0:

Reference value

B:

Brownian

c:

Cold

f:

Host fluid

h:

Hot

i:

Inner

o:

Outer

T:

Thermophoresis

References

  1. Fersadou I, Kahalerras H, El Ganaoui M. MHD mixed convection and entropy generation of a nanofluid in a vertical porous channel. Comput Fluids. 2015;121:164–79. https://doi.org/10.1016/j.compfluid.2015.08.014.

    Article  Google Scholar 

  2. Bondareva NS, Sheremet MA, Abu-Hamdeh N. Heatline visualization of MHD natural convection in an inclined wavy open porous cavity filled with a nanofluid with a local heater. Int J Heat Mass Transf. 2016;99:872–81. https://doi.org/10.1016/j.ijheatmasstransfer.2016.04.055.

    Article  CAS  Google Scholar 

  3. Sheremet MA, Oztop HF, Pop I, Al-Salem K. MHD free convection in a wavy open porous tall cavity filled with nanofluids under an effect of corner heater. Int J Heat Mass Transf. 2016;103:955–964. https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.006.

  4. Mabood F, Shateyi S, Rashidi MM, Momoniat E, Freidoonimehr N. MHD stagnation point flow heat and mass transfer of nanofluids in porous medium with radiation, viscous dissipation and chemical reaction. Adv Powder Technol. 2016;27:742–9. https://doi.org/10.1016/j.apt.2016.02.033.

    Article  CAS  Google Scholar 

  5. Malik S, Nayak AK. MHD convection and entropy generation of nanofluid in a porous enclosure with sinusoidal heating. Int J Heat Mass Transf. 2017;111:329–45. https://doi.org/10.1016/j.ijheatmasstransfer.2017.03.123.

    Article  CAS  Google Scholar 

  6. Mansour MA, Ahmed SE, Chamkha A. Entropy generation optimization for MHD natural convection of a nanofluid in porous media-filled enclosure with active parts and viscous dissipation. Int J Numer Methods Heat Fluid Flow. 2017;27:379–99. https://doi.org/10.1108/HFF-10-2015-0408.

    Article  Google Scholar 

  7. Sheikholeslami M, Sheremet MA, Shafee A, Tlili I. Simulation of nanoliquid thermogravitational convection within a porous chamber imposing magnetic and radiation impacts. Phys A. 2020;550:124058. https://doi.org/10.1016/j.physa.2019.124058.

    Article  CAS  Google Scholar 

  8. Ghalambaz M, Sabour M, Pop I, Wen D. Free convection heat transfer of MgO–MWCNTs/EG hybrid nanofluid in a porous complex shaped cavity with MHD and thermal radiation effects. Int J Numer Methods Heat Fluid Flow. 2019;29:4349–76. https://doi.org/10.1108/HFF-04-2019-0339.

    Article  Google Scholar 

  9. Rashad AM, Rashidi MM, Lorenzini G, Ahmed SE, Aly AM. Magnetic field and internal heat generation effects on the free convection in a rectangular cavity filled with a porous medium saturated with Cu–water nanofluid. Int J Heat Mass Transf. 2017;104:878–89. https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.025.

    Article  CAS  Google Scholar 

  10. Balla CS, Kishan N, Gorla RSR, Gireesha BJ. MHD boundary layer flow and heat transfer in an inclined porous square cavity filled with nanofluids. Ain Shams Eng J. 2017;8:237–54. https://doi.org/10.1016/j.asej.2016.02.010.

    Article  Google Scholar 

  11. Rashad AM, Armaghani T, Chamkha AJ, Mansour MA. Entropy generation and MHD natural convection of a nanofluid in an inclined square porous cavity: effects of a heat sink and source size and location. Chin J Phys. 2018;56:193–211. https://doi.org/10.1016/j.cjph.2017.11.026.

    Article  CAS  Google Scholar 

  12. Chamkha AJ, Rashad AM, Mansour MA, Armaghani T, Ghalambaz M. Effects of heat sink and source and entropy generation on MHD mixed convection of a Cu–water nanofluid in a lid-driven square porous enclosure with partial slip. Phys Fluids. 2017;29:052001. https://doi.org/10.1063/1.4981911.

    Article  CAS  Google Scholar 

  13. Job VM, Gunakala SR. Unsteady hydromagnetic mixed convection nanofluid flows through an L-shaped channel with a porous inner layer and heat-generating components. Int J Heat Mass Transf. 2018;120:970–86. https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.112.

    Article  CAS  Google Scholar 

  14. Gibanov NS, Sheremet MA, Oztop HF, Al-Salem K. MHD natural convection and entropy generation in an open cavity having different horizontal porous blocks saturated with a ferrofluid. J Mag Mag Mater. 2018;452:193–204. https://doi.org/10.1016/j.jmmm.2017.12.075.

  15. Astanina MS, Sheremet MA, Oztop HF, Abu-Hamdeh N. MHD natural convection and entropy generation of ferrofluid in an open trapezoidal cavity partially filled with a porous medium. Int J Mech Sci. 2018;136:493–502. https://doi.org/10.1016/j.ijmecsci.2018.01.001.

    Article  Google Scholar 

  16. Shakar BC, Haritha C, Kishan N. Magnetohydrodynamic convection in a porous square cavity filled by a nanofluid with viscous dissipation effects. Proc Inst Mech Eng Part E J Process Mech Eng. 2019;233:474–88. https://doi.org/10.1177/0954408918765314.

    Article  Google Scholar 

  17. Zahmatkesh I, Shandiz MRH. Optimum constituents for MHD heat transfer of nanofluids within porous cavities: a Taguchi analysis in natural and mixed convection configurations. J Therm Anal Calorim. 2019;138:1669–81. https://doi.org/10.1007/s10973-019-08191-y.

    Article  CAS  Google Scholar 

  18. Mehryan SAM, Sheremet MA, Soltani M, Izadi M. Natural convection of magnetic hybrid nanofluid inside a double-porous medium using two-equation energy model. J Mol Liq. 2019;277:959–70. https://doi.org/10.1016/j.molliq.2018.12.147.

    Article  CAS  Google Scholar 

  19. Izadi M, Oztop HF, Sheremet MA, Mehryan SAM, Abu-Hamdeh N. Coupled FHD–MHD free convection of a hybrid nanoliquid in an inversed T-shaped enclosure occupied by partitioned porous media. Numer Heat Transf Part A. 2019;76:479–98. https://doi.org/10.1080/10407782.2019.1637626.

    Article  Google Scholar 

  20. Zahmatkesh I, Ardekani RA. Effect of magnetic field orientation on nanofluid free convection in a porous cavity: a heat visualization study. J Therm Eng. 2020;6:170–186. https://doi.org/10.18186/thermal.672297.

  21. Izadi M, Sheremet MA, Mehryan SAM. Natural convection of a hybrid nanofluid affected by an inclined periodic magnetic field within a porous medium. Chin J Phys. 2020;65:447–58. https://doi.org/10.1016/j.cjph.2020.03.006.

    Article  CAS  Google Scholar 

  22. Izadi M, Javanahram M, Hashem Zadeh SM, Jing D. Hydrodynamic and heat transfer properties of magnetic fluid in porous medium considering nanoparticle shapes and magnetic field-dependent viscosity. Chin J Chem Eng. 2020;28:329–39. https://doi.org/10.1016/j.cjche.2019.04.024.

    Article  CAS  Google Scholar 

  23. Izadi M, Sheremet MA, Mehryan SAM, Pop I, Öztop HF, Abu-Hamdeh N. MHD thermogravitational convection and thermal radiation of a micropolar nanoliquid in a porous chamber. Int Commun Heat Mass Transf. 2020;110:104409. https://doi.org/10.1016/j.icheatmasstransfer.2019.104409.

    Article  CAS  Google Scholar 

  24. Ghalambaz M, Moattar F, Sheremet MA, Pop I. Triple-diffusive natural convection in a square porous cavity. Transp Porous Med. 2016;111:59–79. https://doi.org/10.1007/s11242-015-0581-y.

    Article  CAS  Google Scholar 

  25. Ghalambaz M, Moattar F, Karbassi A, Sheremet MA, Pop I. Triple-diffusive mixed convection in a porous open cavity. Transp Porous Med. 2017;116:473–91. https://doi.org/10.1007/s11242-016-0785-9.

    Article  CAS  Google Scholar 

  26. Khan ZH, Khan WA, Sheremet MA. Enhancement of heat and mass transfer rates through various porous cavities for triple convective–diffusive free convection. Energy. 2020;210:117702. https://doi.org/10.1016/j.energy.2020.117702.

    Article  CAS  Google Scholar 

  27. Gupta U, Ahuja J, Wanchoo RK. Magneto convection in a nanofluid layer. Int J Heat Mass Transf. 2013;64:1163–71. https://doi.org/10.1016/j.ijheatmasstransfer.2013.05.035.

    Article  CAS  Google Scholar 

  28. Sharma J, Gupta U, Wanchoo RK. Numerical study on binary nanofluid convection in a rotating porous layer. Differ Equ Dyn Syst. 2017;25:239–49. https://doi.org/10.1007/s12591-015-0268-4.

    Article  Google Scholar 

  29. Sharma J, Gupta U, Sharma V. Modified model for binary nanofluid convection with initial constant nanoparticle volume fraction. J Appl Fluid Mech. 2017;10:1387–1395. https://doi.org/10.18869/acadpub.jafm.73.242.27754.

  30. Sheremet MA, Pop I, Ishak A. Double-diffusive mixed convection in a porous open cavity filled with a nanofluid using Buongiorno’s model. Transp Porous Med. 2015;109:131–45. https://doi.org/10.1007/s11242-015-0505-x.

    Article  CAS  Google Scholar 

  31. Umavathi JC, Sheremet MA, Ojjela O, Reddy GJ. The onset of double-diffusive convection in a nanofluid saturated porous layer: cross-diffusion effects. Eur J Mech B Fluid. 2017;65:70–87. https://doi.org/10.1016/j.euromechflu.2017.01.017.

    Article  Google Scholar 

  32. Aly AM, Razieh ZAS. Double-diffusive natural convection in an enclosure filled with nanofluid using ISPH method. Alexandr Eng J. 2016;55:3037–52. https://doi.org/10.1016/j.aej.2016.06.036.

    Article  Google Scholar 

  33. Aly AM, Ahmed SE, Razieh ZAS. Double-diffusive natural convection in a square porous cavity with sinusoidal distributions side walls filled with a nanofluid. J Porous Med. 2018;21:101–22. https://doi.org/10.1615/JPorMedia.v21.i2.10.

    Article  Google Scholar 

  34. Habibi MR, Zahmatkesh I. Double-diffusive natural and mixed convection of binary nanofluids in porous cavities. J Porous Med. 2020;23:955–67. https://doi.org/10.1615/JPorMedia.2020027144.

    Article  Google Scholar 

  35. Mondal S. Unsteady double-diffusive convection in a water-based Al2O3-nanofluid in a two-sided lid-driven porous cavity. Phys Chem Liq. 2019;57:283–95. https://doi.org/10.1080/00319104.2018.1440555.

    Article  CAS  Google Scholar 

  36. Wang B, Liu Y, Li L. Nanofluid double diffusive natural convection in a porous cavity under multiple force fields. Numer Heat Transf Part A. 2020;77:343–60. https://doi.org/10.1080/10407782.2019.1693195.

    Article  CAS  Google Scholar 

  37. Sharifi AH, Zahmatkesh I, Bamoharram FF, Tabrizi AHS, Razavi SF, Saneinezhad S. Experimental measurement of thermophysical properties of alumina–MWCNTs/salt–water hybrid nanofluids. Curr Nanosci. 2020;16:734–47. https://doi.org/10.2174/1573413716666191218122600.

    Article  CAS  Google Scholar 

  38. Choi CY, Kulacki FA. Mixed convection through vertical porous annuli locally heated from the inner cylinder. J Heat Transf. 1992;114:143–51. https://doi.org/10.1115/1.2911239.

    Article  CAS  Google Scholar 

  39. Al-Zahrani MS, Kiwan S. Mixed convection heat transfer in the annulus between two concentric vertical cylinders using porous layers. Transp Porous Med. 2009;76:391–405. https://doi.org/10.1007/s11242-008-9253-5.

  40. Buongiorno J. Convective transport in nanofluids. J Heat Transf. 2006;128:240–50. https://doi.org/10.1115/1.2150834.

    Article  Google Scholar 

  41. Zahmatkesh I. On the importance of thermophoresis and Brownian diffusion for the deposition of micro– and nanoparticles. Int Commun Heat Mass Transf. 2008;35:369–75. https://doi.org/10.1016/j.icheatmasstransfer.2007.08.004.

    Article  Google Scholar 

  42. Revnic C, Ghalambaz M, Groşan T, Sheremet MA, Pop I. Impacts of non-uniform border temperature variations on time-dependent nanofluid free convection within a trapezium: Buongiorno’s nanofluid model. Energies. 2019;12:1461. https://doi.org/10.3390/en12081461.

    Article  CAS  Google Scholar 

  43. Alsabery AI, Sheremet MA, Chamkha AJ, Hashim I. Conjugate natural convection of Al2O3–water nanofluid in a square cavity with a concentric solid insert using Buongiorno’s two-phase model. Int J Mech Eng Sci. 2018;136:200–19. https://doi.org/10.1016/j.ijmecsci.2017.12.025.

    Article  Google Scholar 

  44. Alsabery AI, Ismael MA, Chamkha AJ, Hashim I. Mixed convection of Al2O3–water nanofluid in a double lid-driven square cavity with a solid inner insert using Buongiorno’s two-phase model. Int J Heat Mass Transf. 2018;119:939–61. https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.136.

    Article  CAS  Google Scholar 

  45. Hashim I, Alsabery AI, Sheremet MA, Chamkha AJ. Numerical investigation of natural convection of Al2O3–water nanofluid in a wavy cavity with conductive inner block using Buongiorno’s two-phase model. Adv Powder Technol. 2019;30:399–414. https://doi.org/10.1016/j.apt.2018.11.017.

    Article  CAS  Google Scholar 

  46. Alsabery AI, Armaghani T, Chamkha AJ, Hashim I. Two-phase nanofluid model and magnetic field effects on mixed convection in a lid-driven cavity containing heated triangular wall. Alexandr Eng J. 2020;59:129–48. https://doi.org/10.1016/j.aej.2019.12.017.

    Article  Google Scholar 

  47. Hoghoughi G, Izadi M, Oztop HF, Abu-Hamdeh N. Effect of geometrical parameters on natural convection in a porous undulant-wall enclosure saturated by a nanofluid using Buongiorno’s model. J Mol Liq. 2018;255:148–59. https://doi.org/10.1016/j.molliq.2018.01.145.

    Article  CAS  Google Scholar 

  48. Izadi M, Sinaei S, Mehryan SAM, Oztop HF, Abu-Hamdeh N. Natural convection of a nanofluid between two eccentric cylinders saturated by porous material: Buongiorno’s two phase model. Int J Heat Mass Transf. 2018;127:67–75. https://doi.org/10.1016/j.ijheatmasstransfer.2018.07.066.

    Article  CAS  Google Scholar 

  49. Izadi M, Bastani B, Sheremet MA. Numerical simulation of thermogravitational energy transport of a hybrid nanoliquid within a porous triangular chamber using the two-phase mixture approach. Adv Powder Technol. 2020;31:2493–504. https://doi.org/10.1016/j.apt.2020.04.011.

    Article  CAS  Google Scholar 

  50. Mehryan SAM, Ghalambaz M, Izadi M. Conjugate natural convection of nanofluids inside an enclosure filled by three layers of solid, porous medium and free nanofluid using Buongiorno’s and local thermal non–equilibrium models. J Therm Anal Calorim. 2019;135:1047–67. https://doi.org/10.1007/s10973-018-7380-y.

    Article  CAS  Google Scholar 

  51. Zahmatkesh I, Habibi MR. Natural and mixed convection of nanofluid in porous cavities: a critical analysis using the Buongiorno’s model. J Theor Appl Mech. 2019;57:221–233. https://doi.org/10.15632/jtam-pl.57.1.221.

  52. Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshall JS, Siavashi M, Taylor RA, Niazmand H, Wongwises S, Hayat T, Kolanjiyil A, Kasaeian A, Pop I. Recent advances in modeling and simulation of nanofluid flows—part I: fundamental and theory. Phys Rep. 2019;790:1–48.

    Article  CAS  Google Scholar 

  53. Mahian O, Kolsi L, Amani M, Estelle P, Ahmadi G, Kleinstreuer C, Marshall JS, Taylor RA, Abu-Nada E, Rashidi S, Niazmand H, Wongwises S, Hayat T, Kasaeian A, Pop I. Recent advances in modeling and simulation of nanofluid flows—part II: applications. Phys Rep. 2019;791:1–59.

    Article  CAS  Google Scholar 

  54. Khan SU, Bhatti MM, Riaz A. A revised viscoelastic micropolar nanofluid model with motile micro-organisms and variable thermal conductivity. Heat Transf. 2020. https://doi.org/10.1002/htj.21797.

  55. Rasool G, Wakif A. Numerical spectral examination of EMHD mixed convective flow of second‑grade nanofluid towards a vertical Riga plate using an advanced version of the revised Buongiorno’s nanofluid model. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09865-8.

  56. Dinarvand S. Nodal/saddle stagnation-point boundary layer flow of CuO–Ag/water hybrid nanofluid: a novel hybridity model. Microsyst Technol. 2019;25:2609–23. https://doi.org/10.1007/s00542-019-04332-3.

    Article  CAS  Google Scholar 

  57. Yousefi M, Dinarvand S, Yazdi ME, Pop I. Stagnation-point flow of an aqueous titania–copper hybrid nanofluid toward a wavy cylinder. Int J Numer Methods Heat Fluid Flow. 2018;28:1716–35. https://doi.org/10.1108/HFF-01-2018-0009.

    Article  Google Scholar 

  58. Dinarvand S, Rostami MN. An innovative mass-based model of aqueous zinc oxide–gold hybrid nanofluid for von Kármán’s swirling flow: a comprehensive report on effects of nanoparticle shape factor. J Therm Anal Calorim. 2019;138:845–55. https://doi.org/10.1007/s10973-019-08127-6.

    Article  CAS  Google Scholar 

  59. Chahregh HS, Dinarvand S. TiO2–Ag/blood hybrid nanofluid flow through an artery with applications of drug delivery and blood circulation in the respiratory system. Int J Numer Methods Heat Fluid Flow. 2020;30:4775–96. https://doi.org/10.1108/HFF-10-2019-0732.

    Article  Google Scholar 

  60. Zahmatkesh I, Naghedifar SA. Oscillatory mixed convection in jet impingement cooling of a horizontal surface immersed in a nanofluid-saturated porous medium. Numer Heat Transf Part A. 2017;72:401–16. https://doi.org/10.1080/10407782.2017.1376961.

    Article  CAS  Google Scholar 

  61. Badruddin IA, Zainal ZA, Khan ZA, Mallick Z. Effect of viscous dissipation and radiation on natural convection in a porous medium embedded within vertical annulus. Int J Therm Sci. 2007;46:221–7. https://doi.org/10.1016/j.ijthermalsci.2006.05.005.

    Article  CAS  Google Scholar 

  62. Sheremet MA, Pop I. Conjugate natural convection in a square porous cavity filled by a nanofluid using Buongiorno’s mathematical model. Int J Heat Mass Transf. 2014;79:137–45. https://doi.org/10.1016/j.ijheatmasstransfer.2014.07.092.

    Article  Google Scholar 

  63. Kashani DA, Dinarvand S, Pop I, Hayat T. Effects of dissolved solute on unsteady double-diffusive mixed convective flow of a Buongiorno’s two-component nonhomogeneous nanofluid. Int J Numer Methods Heat Fluid Flow. 2019;29:448–66. https://doi.org/10.1108/HFF-04-2018-0168.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iman Zahmatkesh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahmatkesh, I., Habibi Shandiz, M.R. MHD double-diffusive mixed convection of binary nanofluids through a vertical porous annulus considering Buongiorno’s two-phase model. J Therm Anal Calorim 147, 1793–1807 (2022). https://doi.org/10.1007/s10973-020-10439-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10439-x

Keywords

Navigation