Skip to main content

Effect of Ground Condition on the Storage Zone Temperature of Salinity Gradient Solar Pond

  • Conference paper
  • First Online:
Smart Technologies for Energy, Environment and Sustainable Development

Abstract

Salinity gradient solar pond is an integral thermal energy collection and storage device. Energy extracted from the storage zone can be utilized for power generation, process heating, drying agriculture products, and desalination. In case of buried solar pond, the thermal performance of the pond is highly dependent on the ground conditions. A numerical model was used to investigate the effect of depth of ground water table and thermal conductivity of the soil on the storage zone temperature. The model used has a good agreement with the experimental data. It was found that storage zone temperature and warm-up period is highly influence by the ground conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A :

Area (m2)

\( C_{\text{p}} \) :

Specific heat of NaCl (MJ/kg °C)

h :

Fraction of solar radiation

I :

Incident solar radiation (MJ/m2-h)

k :

Thermal conductivity of NaCl (MJ/m °C)

\( k_{\text{g}} \) :

Thermal conductivity of ground soil (MJ/m °C)

S :

Salinity (%)

T :

Temperature (°C)

t :

Time (h)

x :

Layer thickness (m)

X g :

Depth of ground water table (m)

UCZ:

Upper convective zone

NCZ:

Non convective zone

LCZ:

Lower convective zone

\( Q_{\text{losses}} \) :

Heat losses (MJ)

\( Q_{\text{load}} \) :

Amount of heat extracted (MJ)

\( Q_{\text{rad}} \) :

Radiation heat loss (MJ)

\( Q_{\text{evap}} \) :

Evaporation heat loss (MJ)

\( Q_{\text{conv}} \) :

Convection heat loss (MJ)

\( Q_{\text{sidewall}} \) :

Side wall heat loss (MJ)

\( Q_{\text{ground}} \) :

Ground heat loss (MJ)

\( \rho \) :

Density of NaCl (kg/m3)

\( \beta \) :

Fraction of incident beam entering into water

References

  1. Weinberger, H.: The physics of the solar pond. Sol. Energy 8(2), 45–56 (1963)

    Article  Google Scholar 

  2. Tabor, H., Matz, R.: Solar pond: status report. Sol. Energy 9(4), 177–182 (1965)

    Article  Google Scholar 

  3. Tabor, H.: Solar ponds as heat source for low-temperature multi-effect distillation plants. Desalination 17(3), 289–302 (1975)

    Article  Google Scholar 

  4. Tabor, H.: Non-convecting solar ponds. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 295(1414), 423–433 (1980)

    Article  Google Scholar 

  5. Hull, J.R.: Solar pond ground heat loss to a moving water table. Sol. Energy 35(3), 211–217 (1985)

    Article  Google Scholar 

  6. Srinivasan, J.: Solar pond technology. Sadhana 18(1), 39–55 (1993)

    Article  MathSciNet  Google Scholar 

  7. Wang, Y.F., Akbarzadeh, A.: A study on the transient behaviour of solar ponds. Energy 7(12), 1005–1017 (1982)

    Article  Google Scholar 

  8. Karakilcik, M., Kiymaç, K., Dincer, I.: Experimental and theoretical temperature distributions in a solar pond. Int. J. Heat Mass Transf. 49(5–6), 825–835 (2006)

    Article  Google Scholar 

  9. Date, A., Yaakob, Y., Date, A., Krishnapillai, S., Akbarzadeh, A.: Heat extraction from non-convective and lower convective zones of the solar pond: a transient study. Sol. Energy 97, 517–528 (2013). Elsevier Ltd

    Article  Google Scholar 

  10. Suárez, F., Ruskowitz, J.A., Childress, A.E., Tyler, S.W.: Understanding the expected performance of large-scale solar ponds from laboratory-scale observations and numerical modeling. Appl. Energy 117, 1–10 (2014)

    Article  Google Scholar 

  11. Zhang, Z.M., Wang, Y.F.: A study on the thermal storage of the ground beneath solar ponds by computer simulation. Sol. Energy 44(5), 243–248 (1990)

    Article  Google Scholar 

  12. Saxena, A.K., Sugandhi, S., Husain, M.: Significant depth of ground water table for thermal performance of salt gradient solar pond. Renew Energy 34(3), 790–793 (2009)

    Article  Google Scholar 

  13. Kanan, S., Dewsbury, J., Lane-Serff, G.F., Asim, M.: The effect of ground conditions under a solar pond on the performance of a solar air-conditioning system. Energy Proc. 91, 777–784 (2016)

    Article  Google Scholar 

  14. Ganguly, S., Date, A., Akbarzadeh, A.: Heat recovery from ground below the solar pond. Sol. Energy 155, 1254–1260 (2017). Elsevier Ltd

    Article  Google Scholar 

  15. Tundee, S., Terdtoon, P., Sakulchangsatjatai, P., Singh, R., Akbarzadeh, A.: Heat extraction from salinity-gradient solar ponds using heat pipe heat exchangers. Sol. Energy. 84(9), 1706–1716 (2010). Elsevier Ltd

    Article  Google Scholar 

  16. Abbassi Monjezi, A., Campbell, A.N.: A comprehensive transient model for the prediction of the temperature distribution in a solar pond under mediterranean conditions. Sol. Energy 135, 297–307 (2016). Elsevier Ltd

    Article  Google Scholar 

  17. Sayer, A.H., Al-Hussaini, H., Campbell, A.N.: New theoretical modelling of heat transfer in solar ponds. Sol. Energy 125, 207–218 (2016). Elsevier Ltd

    Article  Google Scholar 

  18. Ali, H.M.: Mathematical modelling of salt gradient solar pond performance. Int. J. Energy Res. 10(4), 377–384 (1986)

    Article  MathSciNet  Google Scholar 

  19. Bryant, H.C., Colbeck, I.: Technical note a solar pond for london? Sol. Energy 19, 321–322 (1977)

    Article  Google Scholar 

  20. POWER Surface Meteorology and Solar Energy (SSE). Available from: https://asdc-arcgis.larc.nasa.gov/sse/. Last accessed 02 Apr 2018

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyamal G. Chakrabarty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chakrabarty, S.G., Wankhede, U.S., Walke, P.V., Gohil, T.B. (2019). Effect of Ground Condition on the Storage Zone Temperature of Salinity Gradient Solar Pond. In: Kolhe, M., Labhasetwar, P., Suryawanshi, H. (eds) Smart Technologies for Energy, Environment and Sustainable Development. Lecture Notes on Multidisciplinary Industrial Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-6148-7_54

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-6148-7_54

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-6147-0

  • Online ISBN: 978-981-13-6148-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics