Skip to main content
Log in

Experimental investigation on spontaneous combustion of coal affected by exothermic reaction of polyurethane in underground coal mines

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Organic elastomers such as polyurethane are widely used as a filling material in underground coal mines. However, the risk of fire hazard in coal seams is increased due to the flammability of polyurethane. Laboratory tests illustrate that in a thermostatic reactor with initial temperature of 25 °C, the temperature during the production of polyurethane increases up to > 140 °C. Adiabatic oxidation experiments and TG–DTG analysis showed that the heating rate of the mixed samples of polyurethane and coal was higher than that of any single component in the initial oxidation stage. From the initial temperature to 100 °C, increasing the proportion of polyurethane was conducive to the acceleration of temperature rise. From 0.180 to 0.850 mm, the self-heating rate was inversely proportional to the particle size. At the initial stage, the low ventilation rate promoted the spontaneous combustion of mixed samples, but when the temperature is > 70 °C, an opposite trend was seen. Kinetic parameters suggested that the activation energy decreases with the introduction of polyurethane. According to the mathematical model, the variation of the spontaneous combustion period of coal and polyurethane was predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

\(A\) :

Pre-exponential factor (s1)

\(E\) :

Activation energy (kJ mol1)

\(R\) :

Universal gas constant (J mol1 K1)

\(C_{{\text{S}}}\) :

Constant in Starink formula

\(G\left( a \right)\) :

Integral mechanism function

\(Q\) :

Energy (J)

\(R\left( T \right)\) :

Heat flow rate (J s1 g1)

\(m\left( T \right)\) :

Sample mass (g)

\(\omega \left( T \right)\) :

Sample moisture content (%)

\(c_{{\text{s}}} \left( T \right)\) :

The specific heat capacity of the sample (J g1 K1)

\(c_{{\text{w}}}\) :

The specific heat of water (J g1 K1)

\(h\) :

The latent heat of evaporation of water (J g1)

\(m_{0}\) :

The initial mass of the sample (g)

\(\omega_{0}\) :

The percentage of water that evaporates (%)

\(A_{{\text{e}}}\) :

The heat dissipation surface area (m2)

\(T_{{\text{e}}}\) :

Environment temperature (K)

\(A_{{\text{i}}}\) :

The heated surface area (m2)

\(T_{{\text{i}}}\) :

Instrument temperature (K)

\(a\) :

Conversion degree (%)

\(\alpha\) :

Coefficient of heat dispersion (W m2 K1)

\(\beta\) :

Heating rate (K min1)

\(\lambda\) :

Coefficient of heat transfer (W m2 K1)

References

  1. Song Z, Kuenzer C. Coal fires in China over the last decade: a comprehensive review. Int J Coal Geol. 2014;133:72–99. https://doi.org/10.1016/j.coal.2014.09.004.

    Article  CAS  Google Scholar 

  2. Singh RVK. Spontaneous heating and fire in coal mines. Proc Eng. 2013;62:78–90. https://doi.org/10.1016/j.proeng.2013.08.046.

    Article  CAS  Google Scholar 

  3. Wang K, Jiang S, Ma X, Wu Z, Shao H, Zhang W, et al. Information fusion of plume control and personnel escape during the emergency rescue of external-caused fire in a coal mine. Process Saf Environ Prot. 2016;103:46–59. https://doi.org/10.1016/j.psep.2016.06.026.

    Article  CAS  Google Scholar 

  4. Lang L, Fu-bao Z. A comprehensive hazard evaluation system for spontaneous combustion of coal in underground mining. Int J Coal Geol. 2010;82(1):27–36. https://doi.org/10.1016/j.coal.2010.01.014.

    Article  CAS  Google Scholar 

  5. Wu J-j, Liu X-c. Risk assessment of underground coal fire development at regional scale. Int J Coal Geol. 2011;86(1):87–94. https://doi.org/10.1016/j.coal.2010.12.007.

    Article  CAS  Google Scholar 

  6. Taraba B, Pavelek Z. Investigation of the spontaneous combustion susceptibility of coal using the pulse flow calorimetric method: 25 years of experience. Fuel. 2014;125:101–5. https://doi.org/10.1016/j.fuel.2014.02.024.

    Article  CAS  Google Scholar 

  7. Xia T, Zhou F, Gao F, Kang J, Liu J, Wang J. Simulation of coal self-heating processes in underground methane-rich coal seams. Int J Coal Geol. 2015;141–142:1–12. https://doi.org/10.1016/j.coal.2015.02.007.

    Article  CAS  Google Scholar 

  8. Zhang J, Ren T, Liang Y, Wang Z. A review on numerical solutions to self-heating of coal stockpile: mechanism, theoretical basis, and variable study. Fuel. 2016;182:80–109. https://doi.org/10.1016/j.fuel.2016.05.087.

    Article  CAS  Google Scholar 

  9. Qi X, Xue H, Xin H, Wei C. Reaction pathways of hydroxyl groups during coal spontaneous combustion. Can J Chem. 2016;94:1–7. https://doi.org/10.1139/cjc-2015-0605.

    Article  CAS  Google Scholar 

  10. Hu E, Zhu C, Rogers K, Han X, Wang J, Zhao J, et al. Coal pyrolysis and its mechanism in indirectly heated fixed-bed with metallic heating plate enhancement. Fuel. 2016;185:656–62. https://doi.org/10.1016/j.fuel.2016.07.115.

    Article  CAS  Google Scholar 

  11. Zhang M, Qin T. Development of a new material for mine fire control. Combust Sci Technol. 2014. https://doi.org/10.1080/00102202.2014.890600.

    Article  Google Scholar 

  12. Li M, Wang D, Shan H. Risk assessment of mine ignition sources using fuzzy Bayesian network. Process Saf Environ Prot. 2019;125:297–306. https://doi.org/10.1016/j.psep.2019.03.029.

    Article  CAS  Google Scholar 

  13. Guo Q, Ren W, Zhu J, Shi J. Study on the composition and structure of foamed gel for fire prevention and extinguishing in coal mines. Process Saf Environ Prot. 2019;128:176–83. https://doi.org/10.1016/j.psep.2019.06.001.

    Article  CAS  Google Scholar 

  14. Chundong S, Hantao L, Li C, Xinhe G. Inert technology application for fire treatment in dead end referred to high gassy mine. Proc Eng. 2011;26:712–6. https://doi.org/10.1016/j.proeng.2011.11.2227.

    Article  CAS  Google Scholar 

  15. Wu Z, Hu S, Jiang S, He X, Shao H, Wang K, et al. Experimental study on prevention and control of coal spontaneous combustion with heat control inhibitor. J Loss Prev Process Ind. 2018;56:272–7. https://doi.org/10.1016/j.jlp.2018.09.012.

    Article  CAS  Google Scholar 

  16. Qin B, Lu Y, Li Y, Wang D. Aqueous three-phase foam supported by fly ash for coal spontaneous combustion prevention and control. Adv Powder Technol. 2014;25(5):1527–33. https://doi.org/10.1016/j.apt.2014.04.010.

    Article  CAS  Google Scholar 

  17. Jia BS, Yin B, Pi ZK, Wen HY. Applying plugging technology to fire prevention of mining without coal pillar. Adv Mater Res. 2012;524–527:543–7. https://doi.org/10.4028/www.scientific.net/AMR.524-527.543.

    Article  Google Scholar 

  18. Zheng X, Zhang D, Wen H. Design and performance of a novel foaming device for plugging air leakage in underground coal mines. Powder Technol. 2019;344:842–8. https://doi.org/10.1016/j.powtec.2018.12.064.

    Article  CAS  Google Scholar 

  19. Qin BT, Lu Y. Experimental research on inorganic solidified foam for sealing air leakage in coal mines. Int J Min Sci Technol. 2013;23(1):151–5. https://doi.org/10.1016/j.ijmst.2013.03.006.

    Article  Google Scholar 

  20. Wu J, Yan H, Wang J, Wu Y, Zhou C. Flame retardant polyurethane elastomer nanocomposite applied to coal mines as air-leak sealant. J Appl Polym Sci. 2013. https://doi.org/10.1002/app.38946.

    Article  Google Scholar 

  21. Liu PS, Chen GF. Chapter seven—producing polymer foams. In: Liu PS, Chen GF, editors. Porous materials. Boston: Butterworth-Heinemann; 2014. p. 345–382.

    Chapter  Google Scholar 

  22. Lu Y. Laboratory study on the rising temperature of spontaneous combustion in coal stockpiles and a paste foam suppression technique. Energy Fuels. 2017. https://doi.org/10.1021/acs.energyfuels.7b00649.

    Article  Google Scholar 

  23. Zhang H, Fang W-Z, Li Y-M, Tao W-Q. Experimental study of the thermal conductivity of polyurethane foams. Appl Therm Eng. 2017;115:528–38. https://doi.org/10.1016/j.applthermaleng.2016.12.057.

    Article  CAS  Google Scholar 

  24. Luo F, Wu K, Lu M, Nie S, Li X, Guan X. Thermal degradation and flame retardancy of microencapsulated ammonium polyphosphate in rigid polyurethane foam. J Therm Anal Calorim. 2015;120(2):1327–35. https://doi.org/10.1007/s10973-015-4425-3.

    Article  CAS  Google Scholar 

  25. McKenna ST, Hull TR. The fire toxicity of polyurethane foams. Fire Sci Rev. 2016;5(1):3. https://doi.org/10.1186/s40038-016-0012-3.

    Article  CAS  Google Scholar 

  26. Yang R, Hu W, Xu L, Song Y, Li J. Synthesis, mechanical properties and fire behaviors of rigid polyurethane foam with a reactive flame retardant containing phosphazene and phosphate. Polym Degrad Stab. 2015;122:102–9. https://doi.org/10.1016/j.polymdegradstab.2015.10.007.

    Article  CAS  Google Scholar 

  27. Guo S, Zhang C, Peng H, Wang W, Liu T. Structural characterization, thermal and mechanical properties of polyurethane/CoAl layered double hydroxide nanocomposites prepared via in situ polymerization. Compos Sci Technol. 2011;71(6):791–6. https://doi.org/10.1016/j.compscitech.2010.12.001.

    Article  CAS  Google Scholar 

  28. Farhan S, Wang R, Jiang H, Li K. Use of waste rigid polyurethane for making carbon foam with fireproofing and anti-ablation properties. Mater Des. 2016;101:332–9. https://doi.org/10.1016/j.matdes.2016.04.008.

    Article  CAS  Google Scholar 

  29. Yuan Y, Yu B, Shi Y, Ma C, Song L, Hu W, et al. Highly efficient catalysts for reducing toxic gases generation change with temperature of rigid polyurethane foam nanocomposites: a comparative investigation. Compos A Appl Sci Manuf. 2018;112:142–54. https://doi.org/10.1016/j.compositesa.2018.05.028.

    Article  CAS  Google Scholar 

  30. Doğan F, Özdek N, Selçuki NA, Kaya İ. The synthesis, characterization and effect of molar mass distribution on solid-state degradation kinetics of oligo(orcinol). J Therm Anal Calorim. 2019;138(1):163–73. https://doi.org/10.1007/s10973-019-08211-x.

    Article  CAS  Google Scholar 

  31. Ma L, Wang D, Wang Y, Dou G, Xin H. Synchronous thermal analyses and kinetic studies on a caged-wrapping and sustained-release type of composite inhibitor retarding the spontaneous combustion of low-rank coal. Fuel Process Technol. 2017;157:65–75. https://doi.org/10.1016/j.fuproc.2016.11.011.

    Article  CAS  Google Scholar 

  32. Wang C, Zhao L, Yuan M, Du Y, Zhu C, Liu Y, et al. Effects of minerals containing sodium, calcium, and iron on oxy-fuel combustion reactivity and kinetics of Zhundong coal via synthetic coal. J Therm Anal Calorim. 2020;139(1):261–71. https://doi.org/10.1007/s10973-019-08439-7.

    Article  CAS  Google Scholar 

  33. Maraden A, Stojan P, Matyáš R, Zigmund J. Impact of initial grain temperature on the activation energy and the burning rate of cast double-base propellant. J Therm Anal Calorim. 2019;137(1):185–91. https://doi.org/10.1007/s10973-018-7927-y.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is funded by the Project of National Natural Science Foundation of China (No. 51604185).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yibo Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y., Guo, P. Experimental investigation on spontaneous combustion of coal affected by exothermic reaction of polyurethane in underground coal mines. J Therm Anal Calorim 147, 337–346 (2022). https://doi.org/10.1007/s10973-020-10312-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10312-x

Keywords

Navigation