Skip to main content
Log in

Impact of initial grain temperature on the activation energy and the burning rate of cast double-base propellant

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Ballistic properties of cast double-base propellants can be affected by the thermal treatment of the propellant grain before firing. In this work, we study the effect of initial grain temperature on both burning rate and activation energy of the double-base propellant. The burning rate of cast double-base propellant has been reported for different initial grain temperatures of − 20 °C, + 20 °C, and + 50 °C. It has been noticed that the burning rate is increased with increasing the initial grain temperature. A reasonable elucidation for this behavior based on thermal investigation is represented. DSC and TGA thermal analysis were conducted to evaluate the effect of initial grain temperature on degradation process. Results from DSC were used to calculate the apparent activation energy related to each initial temperature using Kissinger and Friedman methods. The thermodynamic parameters of activation have been calculated. Tracing the activation energies of the cast double-base propellant over the initial temperature showed that the required activation energy, the enthalpy of activation, and the free energy of activation were decreased with increasing the initial grain temperature which might affect the propellant burning rate to be accelerated due to faster degradation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Yaman H, Celik V, Degirmenci E. Experimental investigation of the factors affecting the burning rate of solid rocket propellants. Fuel. 2014;115:794–803.

    Article  CAS  Google Scholar 

  2. Smith JM. Burning rates of solid propellants. AIChE J. 1960;6:299–304.

    Article  CAS  Google Scholar 

  3. Glick RL. Temperature sensitivity of solid propellant burning rate. AIAA J. 1967;5:586–7.

    Article  CAS  Google Scholar 

  4. Sutton GP. Rocket propulsion elements, New York: Wiley, 8th ed, pp. 435–554, 2010.

  5. Wilken J. Migration of nitroglycerine in double base propellants of guided missiles. International Annual Conference of ICT. 2008;39:V18/1–11.

    Google Scholar 

  6. David A, Lori J, Steven F. Formulation and characterization of a new nitroglycerin-free double base propellant. Propellants Explos Pyrotech. 2014;39:205–10.

    Article  CAS  Google Scholar 

  7. Nguyen TT. Burn rate temperature sensitivity of solid rocket propellants: an overview of current status of experimental results. Int Annu Conf. 1991;22:1–18.

    Google Scholar 

  8. Blair DW. Initial temperature and pressure effects on composite solid-propellant burning rates: comparisons with theory. AIAA J. 1970;8:1439–43.

    Article  CAS  Google Scholar 

  9. Ewing DL, Osborn JR. Burning rate temperature sensitivity of composite solid propellants. J Spacecr Rockets. 1971;8:290–2.

    Article  CAS  Google Scholar 

  10. Steinberger R, Drechsel PD. Manufacture of cast double-base propellant. Adv Chem Ser. 1969;88:1–28.

    Article  Google Scholar 

  11. Chen Xueli, Liu Xiaogang, Wei Hongjian. Study on effect of different processing conditions on combustion performance of cast-CMDB propellants. Huozhayao Xuebao. 1998;21:10–2.

    CAS  Google Scholar 

  12. Leciejewski KZ. Oddities in determining burning rate on basis of closed vessel tests of single base propellant. J Theor Appl Mech. 2014;5(2):313–21.

    Google Scholar 

  13. Yilmaz N, Donaldson B, Gill W. Solid propellant burning rate from strand burner pressure measurement. Propellants Explos Pyrotech. 2008;33(2):109–17.

    Article  CAS  Google Scholar 

  14. Stojan P. The use of low pressure closed vessel and rocket motor for measurements of burning rate of rocket solid propellants. In: Proceedings of New Trends in Research of Energetic Materials, 9th, Pardubice; 2006, pp. 19–21.

  15. Pai Verneker VR, Kishore K. Studies on thermal decomposition of double-base propellants. J Spacecr. 1983;20(2):141–3.

    Article  Google Scholar 

  16. Freire E. Differential scanning calorimetry, protein stability and folding. Theory Pract. 1995, pp. 191–218.

  17. Wielage B, Lampke T, Marx G, Nestler K, Starke D. Thermogravimetric and differential scanning calorimetric analysis of natural fibres and polypropylene. Thermochim Acta. 1999;337:169–77.

    Article  CAS  Google Scholar 

  18. Shekhar Himanshu. Estimation of pressure index and temperature sensitivity coefficient of solid rocket propellants by static evaluation. Def Sci J. 2009;59(6):666–9.

    Article  CAS  Google Scholar 

  19. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand. 1956;57:217–21.

    Article  CAS  Google Scholar 

  20. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–9.

    Article  CAS  Google Scholar 

  21. Sunitha M, Reghunadhan Nair CP, Krishnan K, Ninan KN. Kinetics of Alder-ene reaction of Tris(2-allylphenoxy)triphenoxycyclotriphosphazene and bismaleimides; a DSC study. Thermochim Acta. 2001;374:159–69.

    Article  CAS  Google Scholar 

  22. Straszko J, Humienik MO, Mozejko J. Kinetics of thermal decomposition of ZnSO4·7H2O. Thermochim Acta. 1997;292:145–50.

    Article  CAS  Google Scholar 

  23. Hu RZ, Gao SL, Zhao FQ, Shi QZ, Zhang TL, Zhang JJ. Thermal analysis kinetics. 2nd ed. Beijing: Science Press; 2008.

    Google Scholar 

  24. Ma HX, Song JR, Hu RZ. Non-isothermal kinetics of the thermal decomposition of 3-nitro-1,2,4-triazol-5-one magnesium complex. Chin J Chem. 2003;21:1558–61.

    Article  CAS  Google Scholar 

  25. Hu RZ, Chen SP, Gao SL, Zhao FQ, Luo Y, Gao HX, Shi QZ, Zhao HA, Yao P, Li J. Thermal decomposition kinetics of Pb0.25Ba0.75(TNR)·H2O complex. J Hazard Mater. 2005;117:103–10.

    Article  CAS  PubMed  Google Scholar 

  26. Zhao FQ, Hu RZ, Gao HX, Ma HX. Thermochemical properties, nonisothermal decomposition reaction kinetics and quantum chemical investigation of 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105). In: Bronna OE, editor. New developments in hazardous materials research. New York: Nova Science Publishers Inc.; 2006. p. 93–126.

    Google Scholar 

  27. Ma HX, Song JR, Zhao FQ, Hu RZ, Xiao HM. Nonisothermal reaction kinetics and computational studies on the properties of 2,4,6,8-tetranitro- 2,4,6,8-tetraazabicyclo[3,3,1] onan-3,7-dione (TNPDU). J Chem Phys. 2007;111(35):8642–9.

    Article  CAS  Google Scholar 

  28. Pourmortazavi S, Hosseini S, Rahimi-Nasrabadi M, Hajimirsadeghi S, Momenian H. Effect of nitrate content on thermal decomposition of nitrocellulose. J Hazard Mater. 2009;162:1141–4.

    Article  CAS  PubMed  Google Scholar 

  29. Sovizi M, Hajimirsadeghi S, Naderizadeh B. Effect of particle size on thermal decomposition of nitrocellulose. J Hazard Mater. 2009;168:1134–9.

    Article  CAS  PubMed  Google Scholar 

  30. Song XD, Zhao FQ, Liu ZR, Pan Q, Luo Y. Thermal decomposition mechanism, non-isothermal reaction kinetics of bismuth citrate and its catalytic effect on combustion of double-base propellant. Chem J Chin Univ. 2006;27:125–8.

    CAS  Google Scholar 

  31. Yi JH, Zhao FQ, Xu SY, Gao HX, Hu RZ, Hao HX, Pei Q, Gao Y. Nonisothermal thermal decomposition reaction kinetics of double-base propellant catalyzed with lanthanum citrate. Acta Phys Chim Sin. 2007;23:1316–20.

    Article  CAS  Google Scholar 

  32. Criado JM, Perez-Maqueda LA, Sanchez-Jimenez PE. Dependence of the preexponential factor on temperature. J Therm Anal Calorim. 2005;82:671–5.

    Article  CAS  Google Scholar 

  33. Humienik MO, Mozejko J. Thermodynamic functions of activated complexes created in thermal decomposition processes of sulphates. Thermochim Acta. 2000;344:73–9.

    Article  Google Scholar 

  34. Topma AS. Thermal analysis of liquid and solid propellants. J Hazard Mater. 1980;4:95–112.

    Article  Google Scholar 

  35. Muhamed Suceska, Sanja Matecic Musanic, Ivona Fiamengo Houra. Kinetics and enthalpy of nitroglycerin evaporation from double base propellants by isothermal thermogravimetry. Thermochim Acta. 2010;510:9–16.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Maraden.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maraden, A., Stojan, P., Matyáš, R. et al. Impact of initial grain temperature on the activation energy and the burning rate of cast double-base propellant. J Therm Anal Calorim 137, 185–191 (2019). https://doi.org/10.1007/s10973-018-7927-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7927-y

Keywords

Navigation