Skip to main content
Log in

Development and characterization of multifunctional yttrium iron garnet/epoxy nanodielectrics

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the present work, a series of yttrium iron garnet/epoxy nanocomposite systems were fabricated, and the morphology of nanocomposites were tested by Scanning Electron Microscopy. The thermal stability of the developed systems was assessed by Thermogravimetric Analysis; their thermal properties were further investigated via Differential Scanning Calorimetry (DSC) and their viscoelastic response via Dynamic Mechanical Analysis (DMA). Finally, the dielectric characterization was carried out by means of Broadband Dielectric Spectroscopy. DSC curves revealed an endothermic step-like transition of all systems, attributed to the glass to rubber transition of the polymer matrix. All nanocomposites exhibit a two stages degradation profile. The presence of nanoinclusions enhances the thermal stability of the systems shifting the onset of the first degradation process to higher temperatures. Through the DSC and DMA techniques, the transition from glassy to rubbery state of the polymer matrix was observed and the characteristic Tg temperature was determined. The addition of the ceramic inclusions enhances the thermomechanical properties, as well as the dielectric response of the nanocomposites, as implied by the augmenting values of the real part of dielectric permittivity along with the storage modulus with the reinforcing phase loading. Three dielectric relaxation processes were identified: interfacial polarization, glass to rubber transition of the polymer matrix and reorientation of the small polar side groups of the polymer chain at low, intermediate and high frequencies, respectively. Furthermore, the ability of the systems to store energy was examined via the dielectric reinforcing function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Schadler LS, Brinson LC, Sawyer WG. Polymer nanocomposites: a small part of the story. JOM. 2007;59:53–60.

    Article  CAS  Google Scholar 

  2. Hanemann T, Szabó DV. Polymer-nanoparticle composites: from synthesis to modern applications. Materials. 2010;3:3468–517. https://doi.org/10.3390/ma3063468.

    Article  CAS  PubMed Central  Google Scholar 

  3. Sagar R, Gaur MS, Rogachev AA. Piezoelectric and pyroelectric properties of ceramic nanoparticles-based nanostructured PVDF/PVC blend nanocomposites. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09979-z.

    Article  Google Scholar 

  4. Tsikriteas ZM, Manika GC, Patsidis AC, Psarras GC. Probing the multifunctional behaviour of barium zirconate/barium titanate/epoxy resin hybrid nanodielectrics. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09855-w.

    Article  Google Scholar 

  5. Thomas P, Ashokbabu A, Vaish R. Structural, thermal and dielectric properties and thermal degradation kinetics of nylon 11/CaCu3Ti4O12 (CCTO) nanocomposites. J Therm Anal Calorim. 2020;141:1123–35.

    Article  CAS  Google Scholar 

  6. Psarras GC. Conductivity and dielectric characterization of polymer nanocomposites. In: Tjong SC, Mai Y-W, editors. Physical properties and applications of polymer nanocomposites. Cambridge: Woodhead Publishing; 2010. p. 31–69.

    Chapter  Google Scholar 

  7. Sanida A, Stavropoulos SG, Speliotis T, Psarras GC. Development, characterization, energy storage and interface dielectric properties in SrFe12O19/epoxy nanocomposites. Polymer. 2017;120:73–81.

    Article  CAS  Google Scholar 

  8. Sanida A, Stavropoulos SG, Speliotis T, Psarras GC. Investigating the effect of Zn ferrite nanoparticles on the thermomechanical, dielectric and magnetic properties of polymer nanocomposites. Materials. 2019;12:3015.

    Article  CAS  Google Scholar 

  9. Sanida A, Stavropoulos SG, Speliotis T, Psarras GC. Magneto-dielectric behaviour of M-type hexaferrite/polymer nanocomposites. Materials. 2018;11:2551. https://doi.org/10.3390/ma11122551.

    Article  CAS  PubMed Central  Google Scholar 

  10. Tsonos C, Zois H, Kanapitsas A, Soin N, Siores E, Peppas GD, Pyrgioti EC, Sanida A, Stavropoulos SG, Psarras GC. Polyvinylidene fluoride/magnetite nanocomposites: dielectric and thermal response. J Phys Chem Solids. 2019;129:378–86.

    Article  CAS  Google Scholar 

  11. De Bellis G, De Rosa IM, Dinescu A, Sarto MS, Tamburrano A. Electromagnetic properties of carbon-based nanocomposites: The effect of filler and resin characteristics. 2010 10th IEEE Conf Nanotechnology, NANO 2010. 2010;486–9.

  12. Konstantinou AC, Patsidis AC, Psarras GC. Boron nitride/epoxy resin nanocomposites: development, characterization and functionality. J Therm Anal Calorim. 2020;1:1. https://doi.org/10.1007/s10973-020-09933-z.

    Article  CAS  Google Scholar 

  13. Stavropoulos SG, Sanida A, Psarras GC. A comparative study on the electrical properties of different forms of carbon allotropes—epoxy nanocomposites. Exp Polym Lett. 2020;14:477–90.

    Article  CAS  Google Scholar 

  14. Hussain F, Hojjati M, Okamoto M, Gorga RE. Review article: polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J Compos Mater. 2006;40:1511–75.

    Article  CAS  Google Scholar 

  15. Mikitaev AK, Ligidov MK, Zaikov GE. Polymers, polymer blends, polymer composites, and filled polymers: synthesis, properties, and applications. New York: Nova Science Publishers; 2006.

    Google Scholar 

  16. Psarras GC. Nanodielectrics: an emerging sector of polymer nanocomposites. Exp Polym Lett. 2008;2:460.

    Article  Google Scholar 

  17. Fréchette MF, Trudeau ML, Alamdari HD, Boily S. Introductory remarks on nanodielectrics. IEEE Trans Dielectr Electr Insul. 2004;11:808–18.

    Article  Google Scholar 

  18. Manika GC, Psarras GC. Energy storage and harvesting in BaTiO3/epoxy nanodielectrics. High Volt. 2016;1:151–7.

    Article  Google Scholar 

  19. Mathioudakis GN, Patsidis AC, Psarras GC. Dynamic electrical thermal analysis on zinc oxide/epoxy resin nanodielectrics. J Therm Anal Calorim. 2014;116:27–33. https://doi.org/10.1007/s10973-013-3510-8.

    Article  CAS  Google Scholar 

  20. Prateek Thakur VK, Gupta RK. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chem Rev. 2016;116:4260–317.

    Article  CAS  Google Scholar 

  21. Barber P, Balasubramanian S, Anguchamy Y, Gong S, Wibowo A, Gao H, et al. Polymer composite and nanocomposite dielectric materials for pulse power energy storage. Materials. 2009;2:1697–733.

    Article  CAS  Google Scholar 

  22. Dang Z-M, Yuan J-K, Yao S-H, Liao R-J. Flexible nanodielectric materials with high permittivity for power energy storage. Adv Mater. 2013;25:6334–65.

    Article  CAS  Google Scholar 

  23. Tan D, Irwin P. Polymer based nanodielectric composites. In: Sikalidis C, editor. Advances in ceramics electric and magnetic ceramics, bioceramics, ceramics and environment. London: INTECH Open Access Publ; 2011. https://doi.org/10.5772/23012.

    Chapter  Google Scholar 

  24. Sanida A, Stavropoulos SG, Speliotis T, Psarras GC. Probing the magnetoelectric response and energy efficiency in Fe3O4/epoxy nanocomposites. Polym Test. 2020;88:106560.

    Article  CAS  Google Scholar 

  25. Pascault J-P, Williams RJJ. Epoxy polymers: new materials and innovations. Hoboken: Wiley-VCH; 2010.

    Book  Google Scholar 

  26. Tuncer E, Sauers I, James DR, Ellis AR, Paranthaman MP, Aytuğ T, et al. Electrical properties of epoxy resin based nano-composites. Nanotechnology. 2007;18:025703.

    Article  Google Scholar 

  27. Trompeta A-F, Koumoulos E, Stavropoulos S, Velmachos T, Psarras G, Charitidis C. Assessing the critical multifunctionality threshold for optimal electrical, thermal, and nanomechanical properties of carbon nanotubes/epoxy nanocomposites for aerospace applications. Aerospace. 2019;6:7.

    Article  Google Scholar 

  28. Adam JD, Davis LE, Dionne GF, Schloemann EF, Stitzer SN. Ferrite devices and materials. IEEE Trans Microw Theory Tech. 2002;50:721–37.

    Article  CAS  Google Scholar 

  29. Sharma V, Saha J, Patnaik S, Kuanr BK. Synthesis and characterization of yttrium iron garnet (YIG) nanoparticles - Microwave material. AIP Adv. 2017;7:056405. https://doi.org/10.1063/1.4973199.

    Article  CAS  Google Scholar 

  30. Aichele T, Lorenz A, Hergt R, Görnert P. Garnet layers prepared by liquid phase epitaxy for microwave and magneto-optical applications—a review. Cryst Res Technol. 2003;38:575–87.

    Article  CAS  Google Scholar 

  31. Wadgane SR, Shirsath SE, Gaikwad AS, Satpute S, Kadam AB, Kadam RH. Ferro- and magneto-electric characteristics in YFeO3 − Y3Fe5O12 nanocomposites. J Magn Magn Mater. 2018;457:103–9.

    Article  CAS  Google Scholar 

  32. Vryonis O, Anastassopoulos DL, Vradis AA, Psarras GC. Dielectric response and molecular dynamics in epoxy-BaSrTiO3 nanocomposites: effect of nanofiller loading. Polymer. 2016;95:82–90.

    Article  CAS  Google Scholar 

  33. Psarras GC. Hopping conductivity in polymer matrix-metal particles composites. Compos Part A Appl Sci Manuf. 2006;37:1545–53.

    Article  Google Scholar 

  34. Jonscher AK. Universal relaxation law: a sequel to dielectric relaxation in solids. London: Chelsea Dielectrics Press; 1996.

    Google Scholar 

  35. Tsangaris GM, Psarras GC, Kouloumbi N. Electric modulus and interfacial polarization in composite polymeric systems. J Mater Sci. 1998;33:2027–37.

    Article  CAS  Google Scholar 

  36. Psarras GC, Manolakaki E, Tsangaris GM. Electrical relaxations in polymeric particulate composites of epoxy resin and metal particles. Compos Part A Appl Sci Manuf. 2002;33:375–84.

    Article  Google Scholar 

  37. Ioannou G, Patsidis A, Psarras GC. Dielectric and functional properties of polymer matrix/ZnO/BaTiO3 hybrid composites. Compos Part A Appl Sci Manuf. 2011;42:104–10.

    Article  Google Scholar 

  38. Manika GC, Psarras GC. Barium titanate/epoxy resin composite nanodielectrics as compact capacitive energy storing systems. Exp Polym Lett. 2019;13:749–58.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Aikaterini Sanida wishes to acknowledge the General Secretariat for Research and Technology (GSRT) and the Hellenic Foundation for Research and Innovation (HFRI) for providing a PhD scholarship. (Scholarship Code: 2383).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Aikaterini Sanida, Georgios C. Psarras; Methodology: Aikaterini Sanida, Sotirios G. Stavropoulos, Thanassis Speliotis, Georgios C. Psarras; Formal analysis and investigation: Aikaterini Sanida, Sotirios G. Stavropoulos; Writing—original draft preparation: Aikaterini Sanida; Writing—review and editing: Aikaterini Sanida, Sotirios G. Stavropoulos, Georgios C. Psarras; Supervision: Georgios C. Psarras.

Corresponding author

Correspondence to G. C. Psarras.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanida, A., Stavropoulos, S.G., Speliotis, T. et al. Development and characterization of multifunctional yttrium iron garnet/epoxy nanodielectrics. J Therm Anal Calorim 142, 1701–1708 (2020). https://doi.org/10.1007/s10973-020-10247-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10247-3

Keywords

Navigation