Skip to main content
Log in

A mathematical model to examine the heat transport features in Burgers fluid flow due to stretching cylinder

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this article, a new mathematical modelling is presented for the flow of Burgers fluid induced by a stretching cylinder in the presence of magnetic field. Moreover, the mechanisms of heat and mass transport are also examined by using the law of conservation of energy with Fourier’s and Fick’s laws for thermal and solutal energy, respectively. The ordinary differential equations (ODEs) are attained from partial differential equations by making the use of dimensionless similarity transformations. The homotopic approach is being adopted to solve the developed ODEs. The influences of different physical parameters on velocity, thermal and concentration profiles are pondered through graphs and physical behavior of these parameters is enlightened with the realistic verdicts. The basic physical intimation of pertained results is that the temperature and solutal curves of Burgers liquid show the enhancing trend for larger scales of relaxation time parameter \(\left( \beta _{1}\right)\) and for material parameter of Burgers fluid \(\left( \beta _{2}\right)\) while, opposing behavior is being observed for retardation time parameter \(\left( \beta _{3}\right)\). Moreover, it is assessed that the concentration rate and solutal boundary layer thickness decline with an intensification in Lewis number (Le). Also, it is noted that the temperature distribution enhances/declines with higher values of heat source and sink parameter, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

uw :

Velocity components

rz :

Cylindrical coordinates

\(\lambda _{1}\) :

Fluid relaxation time

\(\lambda _{2}\) :

The material parameter of Burgers fluid

\(\lambda _{3}\) :

Fluid retardation time

\({\mathbf {S}}\) :

Extra stress tensor

\({\mathbf {j}}\) :

Mass flux

\({\mathbf {q}}\) :

Heat flux

\(C_\mathrm{w}\) :

Concentration at surface

\(C_{\infty }\) :

Ambient concentration

\(w_\mathrm{z}\) :

Stretching cylinder velocity

k :

Thermal conductivity

p :

Fluid pressure

f :

Dimensionless velocity function

\(\alpha\) :

Thermal diffusivity

\(c_\mathrm{p}\) :

Specific heat at constant pressure

\(c_\mathrm{f}\) :

The specific heat

M :

Magnetic field

\(\beta _{2}\) :

Burgers fluid parameter

\(\delta\) :

Heat source/sink parameter

Pr:

Prandtl number

T :

Fluid temperature

C :

Fluid concentration

\({\mathbf {J}}_{1}\) :

Current density

\(Q_{0}\) :

Heat source/sink

\(A_{1}\) :

First Rivilin–Ericksen tensor

Le:

Lewis number

\(T_\mathrm{w}\) :

Surface temperature

\(T_{\infty }\) :

Ambient temperature

\(D_\mathrm{B}\) :

The diffusion coefficient

\(\rho\) :

Fluid density

\(\eta\) :

Dimensionless similarity variable

\(\mu _{0}\) :

Zero shear viscosity

\(\nu\) :

Kinematic viscosity

\(\theta\) :

Dimensionless temperature

\(\phi\) :

Dimensionless concentration function

\(\rho _\mathrm{f}\) :

The density of liquid

\(\beta _{1}\) :

Fluid relaxation parameter

\(\beta _{3}\) :

Fluid retardation parameter

References

  1. Zhao M, Wang S, Zhang Q. Onset of triply diffusive convection in a Maxwell fluid saturated porous layer. Appl Math Model. 2014;38:2345–52.

    Article  Google Scholar 

  2. Chamkha A, Abbasbandy S, Rashad AM. Non-Darcy natural convection flow for non-Newtonian nanofluid over cone saturated in porous medium with uniform heat and volume fraction fluxes. Int J Numer Methods Heat Fluid Flow. 2015;25:422–37.

    Article  Google Scholar 

  3. Babu MJ, Sandeep N. MHD non-Newtonian fluid flow over a slendering stretching sheet in the presence of cross-diffusion effects. Alex Eng J. 2016;55:2193–201.

    Article  Google Scholar 

  4. Khan M, Irfan M, Khan WA. Numerical assessment of solar energy aspects on 3D magneto-Carreau nanofluid: A revised proposed relation. Int J Hydrogen Energy. 2017;42:22054–65.

    Article  CAS  Google Scholar 

  5. Sheikholeslami M, Ziabakhsh Z, Ganji DD. Transport of magnetohydrodynamic nanofluid in a porous media. Colloids Surf A Physicochem Eng Asp. 2017;520:201–12.

    Article  CAS  Google Scholar 

  6. Jahanbakhshi A, Nadooshan AA, Bayareh M. Magnetic field effects on natural convection flow of a non-Newtonian fluid in an L-shaped enclosure. J Therm Anal Calorim. 2018;133:1407–16.

    Article  CAS  Google Scholar 

  7. Hosseini SR, Sheikholeslami M, Ghasemian M, Ganji DD. Nanofluid heat transfer analysis in a microchannel heat sink (MCHS) under the effect of magnetic field by means of KKL model. Powder Technol. 2018;324:36–47.

    Article  CAS  Google Scholar 

  8. Sheikholeslami M, Ganji DD. Influence of electric field on \(\text{ Fe}_3\text{ O}_4\)–water nanofluid radiative and convective heat transfer in a permeable enclosure. J Mol Liq. 2018;250:404–12.

    Article  CAS  Google Scholar 

  9. Pishkar I, Ghasemi B, Raisi A, Aminossadati SA. Numerical study of unsteady natural convection heat transfer of Newtonian and non-Newtonian fluids in a square enclosure under oscillating heat flux. J Therm Anal Calorim. 2019;138:1697–710.

    Article  CAS  Google Scholar 

  10. Shafee A, Sheikholeslami M, Jafaryar M, Babazadeh H. Hybrid nanoparticle swirl flow due to presence of turbulator within a tube. J Therm Anal Calorim. 2020;. https://doi.org/10.1007/s10973-020-09570-6.

    Article  Google Scholar 

  11. Sheikholeslami M, Arabkoohsar A, Jafaryar M. Impact of a helical-twisting device on the thermal-hydraulic performance of a nanofluid flow through a tube. J Therm Anal Calorim. 2020;139:3317–29.

    Article  CAS  Google Scholar 

  12. Shafee A, Sheikholeslami M, Jafaryar M, Selimefendigil F, Bhatti MM, Babazadeh H. Numerical modeling of turbulent behavior of nanomaterial exergy loss and flow through a circular channel. J Therm Anal Calorim. 2020;. https://doi.org/10.1007/s10973-020-09568-0.

    Article  Google Scholar 

  13. Burgers JM. Mechanical considerations-model systems-phenomenological theories of relaxation and of viscosity. 1939.

  14. Maxwell JC. On the dynamical theory of gases. Philos Trans R Soc Lond. 1866;157:26–78.

    Google Scholar 

  15. Oldroyd JG. On the formulation of rheological equations of state. Proc R Soc Lond Ser A. 1950;200:523–91.

    Article  CAS  Google Scholar 

  16. Lee AR, Markwick AHD. The mechanical properties of bituminous surfacing materials under constant stress. J Soc Chem Ind. 1937;56:146–56.

    CAS  Google Scholar 

  17. Saal RNJ, Labout JWA. Rheological properties of asphalts. In: Eirich FR, editor. Rheology: theory and applications, vol. 2. New York: Academic Press; 1958. p. 363–400.

    Google Scholar 

  18. Monismith CL, Secor KE. Viscoelastic behavior of asphalt concrete pavements. Berkeley: Inst. of Transportation and Traffic Eng., Univ. of California; 1962.

    Google Scholar 

  19. Monismith CL, Alexander RL, Secor KE. Rheologic behavior of asphalt concrete. Proc Assoc Asph Paving Technol Tech Sess. 1966;35:400–50.

    Google Scholar 

  20. Muralikrishnan JM, Rajagopal KR. Review of the uses and modeling of bitumen from ancient to modern times. Appl Mech Rev. 2003;56:149–214.

    Article  Google Scholar 

  21. Rossow VJ. On the flow of electrically conducting fluids over a flat plate in the presence of a transverse magnetic field, NASA Report No. 1358 (1958).

  22. Alfven HL. Existence of electromagnetic–hydrodynamic waves. Nature. 1942;150:405–6.

    Article  Google Scholar 

  23. Liron N, Wilhelm H. Integration of the magnetohydrodynamic boundary-layer equations by Meksyn’s method. Appl Math Mech: ZAMM. 1974;1:1. https://doi.org/10.1002/zamm.19740540105.

    Article  Google Scholar 

  24. Makinde OD, Khan WA, Khan ZH. Buoyancy effects on MHD stagnation point flow and heat transfer of a nanofluid past a convectively heated stretching/shrinking sheet. Int J Heat Mass Transf. 2013;62:526–33.

    Article  Google Scholar 

  25. Pal D, Mandal G, Vajravelu K. MHD convection–dissipation heat transfer over a non-linear stretching and shrinking sheets in nanofluids with thermal radiation. Int J Heat Mass Transf. 2013;65:481–90.

    Article  Google Scholar 

  26. Govardhan K, Nagaraju G, Kaladhar K, Balasiddulu M. MHD and radiation effects on mixed convection unsteady flow of micropolar fluid over a stretching sheet. Procedia Comput Sci. 2015;57:65–76.

    Article  Google Scholar 

  27. Daniel YS, Aziz ZA, Ismail Z, Salah F. Double stratification effects on unsteady electrical MHD mixed convection flow of nanofluid with viscous dissipation and Joule heating. J Appl Res Technol. 2017;15:464–76.

    Article  Google Scholar 

  28. Chamkha AJ, Rashad AM, Armaghani T, Mansour MA. Effects of partial slip on entropy generation and MHD combined convection in a lid-driven porous enclosure saturated with a Cu-water nanofluid. J Therm Anal Calorim. 2018;132:1291–306.

    Article  CAS  Google Scholar 

  29. Soomro FA, Usman M, Haq RU, Wang W. Thermal and velocity slip effects on MHD mixed convection flow of Williamson nanofluid along a vertical surface: modified Legendre wavelets approach. Phys E Low Dimens Syst Nanostruct. 2018;104:130–7.

    Article  CAS  Google Scholar 

  30. Ahmed SE, Mansour MA, Hussein AK, Mallikarjuna B, Almeshaal AM, Kolsi L. MHD mixed convection in an inclined cavity containing adiabatic obstacle and filled with Cu-water nanofluid in the presence of the heat generation and partial slip. J Therm Anal Calorim. 2019;138:1443–60.

    Article  CAS  Google Scholar 

  31. Crane LJ. Boundary layer flow due to a stretching cylinder. Z Angew Math Phys. 1975;26:619–22.

    Article  Google Scholar 

  32. Wang CY. Fluid flow due to a stretching cylinder. Phys Fluids. 1988;31:466–8.

    Article  Google Scholar 

  33. Wang CY, Ng CO. Slip flow due to a stretching cylinder. Int J Non Linear Mech. 2011;46:1191–4.

    Article  Google Scholar 

  34. Ashorynejad HR, Sheikholeslami M, Pop I, Ganji DD. Nanofluid flow and heat transfer due to a stretching cylinder in the presence of magnetic field. Heat Mass Transf. 2013;49:427–36.

    Article  CAS  Google Scholar 

  35. Sheikholeslami M, Mustafa MT, Ganji DD. Nanofluid flow and heat transfer over a stretching porous cylinder considering thermal radiation. Iran J Sci Technol. 2015;39:433–40.

    Google Scholar 

  36. Tamoor M, Waqas M, Khan MI, Alsaedi A, Hayat T. Magnetohydrodynamic flow of Casson fluid over a stretching cylinder. Results Phys. 2017;7:498–502.

    Article  Google Scholar 

  37. Hashim A Hamid, Khan M. Transient flow and heat transfer mechanism for Williamson-nanomaterials caused by a stretching cylinder with variable thermal conductivity. Microsyst Technol. 2019;25:3287–97.

    Article  Google Scholar 

  38. Xu HJ, Xing ZB, Wang FQ, Cheng ZM. Review on heat conduction, heat convection, thermal radiation and phase change heat transfer of nanofluids in porous media: Fundamentals and applications. Chem Eng Sci. 2019;195:462–83.

    Article  CAS  Google Scholar 

  39. Xu HJ, Xing Z, Vafai K. Analytical considerations of flow/thermal coupling of nanofluids in foam metals with local thermal non-equilibrium (LTNE) phenomena and inhomogeneous nanoparticle distribution. Int J Heat Fluid Flow. 2019;77:242–55.

    Article  Google Scholar 

  40. Xu HJ. Thermal transport in microchannels partially filled with micro-porous media involving flow inertia, flow/thermal slips, thermal non-equilibrium and thermal asymmetry. Int Commun Heat Mass Transf. 2020;110:104404.

    Article  Google Scholar 

  41. Khan M, Iqbal Z, Ahmed A. Stagnation point flow of magnetized Burgers’ nanofuid subject to thermal radiation. Appl Nanosci. 2020;. https://doi.org/10.1007/s13204-020-01360-8.

    Article  Google Scholar 

  42. Iqbal Z, Khan M, Ahmed A, Ahmed J, Hafeez A. Thermal energy transport in Burgers nanofuid flow featuring the Cattaneo-Christov double difusion theory. Appl Nanosci. 2020;. https://doi.org/10.1007/s13204-020-01386-y.

    Article  Google Scholar 

  43. Khan M, Ahmed A, Irfan M, Ahmed J. Analysis of Cattaneo–Christov theory for unsteady flow of Maxwell fluid over stretching cylinder. J Therm Anal Calorim. 2020;. https://doi.org/10.1007/s10973-020-09343-1.

    Article  Google Scholar 

  44. Abel MS, Tawade JV, Nandeppanavar MM. MHD flow and heat transfer for the upper-convected Maxwell fluid over a stretching sheet. Meccanica. 2012;47:385–93.

    Article  Google Scholar 

  45. Waqas M, Khan MI, Hayat T, Alsaedi A. Stratified flow of an Oldroyd-B nanoliquid with heat generation. Results Phys. 2017;7:2489–96.

    Article  Google Scholar 

  46. Irfan M, Khan M, Khan WA. Impact of homogeneous–heterogeneous reactions and non-Fourier heat flux theory in Oldroyd-B fluid with variable conductivity. J Braz Soc Mech Sci Eng. 2019;41:135.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahoor Iqbal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M., Iqbal, Z. & Ahmed, A. A mathematical model to examine the heat transport features in Burgers fluid flow due to stretching cylinder. J Therm Anal Calorim 147, 827–841 (2022). https://doi.org/10.1007/s10973-020-10224-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10224-w

Keywords

Navigation