Skip to main content
Log in

Employment of thermal analysis applied to the oxidative stability evaluation of biodiesel using chalcone analogues

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Biodiesel is a prominent green combustible constituted of alkyl esters of fatty acids that can be prone to oxidation leading to undesirable effects in the fuel that can difficult its use. In this sense, there is a need for the development of antioxidants decelerating the oxidation of biodiesel. In this way, the aim of this work was to evaluate synthetic chalcones, which have the potential to act as oxidative stabilizers, from an initial screening of a series of chalcone analogues at different concentrations as antioxidant agents in biodiesel obtained from frying soybean oil. It should be noted that this is the first work to report the analysis of stabilization of biodiesel from soybean frying oil with synthetic chalcones. Results indicated that all of the quality parameters required for biodiesel were attended, except for the oxidative stability, as determined by standards of the European Union, USA and Brazil. Chalcone analogues were synthesized in moderate to good yields, while DPPH assay showed that these molecules had an antioxidant activity. Differential scanning calorimetry revealed that hydroxychalcones had an antioxidant activity in biodiesel at concentration equal to or above 1250 ppm. Therefore, this study indicates that chalcones have a structural template worth exploring to be applied as stabilizer agents in biodiesel.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pacheco BS, Da Silva CC, de Freitas SC, Berneira LM, da Silva VL, Winkel KT, Pereira, CMP. Employment of alternative raw materials for biodiesel synthesis. In: Trindade M (ed) Springer, Berlin, 2018. pp 33–55.

  2. Da Silva CC, Pacheco BS, de Freitas SC, Berneira LM, dos Santos MAZ, Pizzuti L, Pereira CMP. Hydroxychalcones: synthetic alternatives to enhance oxidative stability of biodiesel. In: Trindade, M, editor. Springer; 2018. pp. 81–110.

  3. Xin J, Imahara H, Saka S. Kinetics on the oxidation of biodiesel stabilized with antioxidant. Fuel. 2009;88:282–6.

    Article  CAS  Google Scholar 

  4. Sivakumar PM, Prabhakar PK, Doble M. Synthesis, antioxidant evaluation, and quantitative structure-activity relationship studies of chalcones. Med Chem Res. 2011;20:482–92.

    Article  CAS  Google Scholar 

  5. Zuleta EC, Baena L, Rios LA, Calderón JA. The oxidative stability of biodiesel and its impact on the deterioration of metallic and polymeric materials: A review. J. Braz. Chem. Soc. Braz Chem Soc. 2012; 23:2159–75.

  6. Dweck J, Leonardo RS, Valle MLM. Evaluating antioxidants efficiency during storage of ethylic and methylic biodiesel by low pressurized DSC and Rancimat methods. J Therm Anal Calorim. 2013;113:1317–25.

    Article  CAS  Google Scholar 

  7. Kobelnik M, Ferreira LMB, Regasini LO, Dutra LA, da Silva BV, Ribeiro CA. Thermal study of chalcones: thermal decomposition of chalcone and its hydroxylated derivatives. J Therm Anal Calorim. 2018;132:425–31.

    Article  CAS  Google Scholar 

  8. Pacheco BS, Nunes CFP, Rockembach CT, Bertelli P, Mesko MF, Roesch-Ely M, Moura S, Pereira CMP. Eco-friendly synthesis of esters under ultrasound with p-toluenesulfonic acid as catalyst. Green Chem Lett Rev. 2014;7:265–70.

    Article  CAS  Google Scholar 

  9. Lahsasni SA, Al Korbi FH, Aljaber NAA. Synthesis, characterization and evaluation of antioxidant activities of some novel chalcones analogues. Chem Cent J. 2014;8:1–10.

    Article  CAS  Google Scholar 

  10. Focke WW, Van Der Westhuizen I. Oxidation induction time and oxidation onset temperature of polyethylene in air: testing Gimzewski’s postulate. J Therm Anal Calorim. 2010;99:285–93.

    Article  CAS  Google Scholar 

  11. Rockembach CT, Dias D, Vieira BM, Ritter M, Dos Santos MAZ, De Oliveira DM, Pereira CMP. Synthesis of biodiesel from grape seed oil using ultrasound irradiation. Rev Virtual Quim. 2014;6:884–97.

    Article  Google Scholar 

  12. Hobuss CB, Venzke D, Pacheco BS, Souza AO, Santos MAZ, Moura S, Pereira CMP. Ultrasound-assisted synthesis of aliphatic acid esters at room temperature. Ultrason Sonochem. 2012;19:387–9.

    Article  CAS  Google Scholar 

  13. De Oliveira DM, Ongaratto DP, Fontoura LAM, Naciuk FF, Dos Santos VOB, Kunz JD, Pereira CMP. Obtenção de biodiesel por transesterificação em dois estágios e sua caracterização por cromatografia gasosaóleos e gorduras em laboratório de química orgânica. Quim Nova. 2013;36:734–7.

    Article  Google Scholar 

  14. Ritter M, Martins R, Dias D, M.P. Pereira C. Recent Advances on the Synthesis of Chalcones with Antimicrobial Activities: A Brief Review. Lett Org Chem. 2014;11:498–508.

  15. Ritter M, Martins RM, Rosa SA, Malavolta JL, Lund RG, Flores AFC, et al. Green synthesis of chalcones and microbiological evaluation. J Braz Chem Soc. 2015;26:1201–10.

    CAS  Google Scholar 

  16. Wang FW, Wang SQ, Zhao BX, Miao JY. Discovery of 2’-hydroxychalcones as autophagy inducer in A549 lung cancer cells. Org Biomol Chem. 2014;12:3062–70.

    Article  CAS  Google Scholar 

  17. Pellati F, Benvenuti S, Magro L, Melegari M, Soragni F. Analysis of phenolic compounds and radical scavenging activity of Echinacea spp. J Pharm Biomed Anal. 2004;35:289–301.

    Article  CAS  Google Scholar 

  18. Georgogianni KG, Kontominas MG, Tegou E, Avlonitis D, Gergis V. Biodiesel production: reaction and process parameters of alkali-catalyzed transesterification of waste frying oils. Energy Fuels. 2007;21:3023–7.

    Article  CAS  Google Scholar 

  19. Encinar JM, González JF, Rodríguez-Reinares A. Biodiesel from used frying oil. Variables affecting the yields and characteristics of the biodiesel. Ind Eng Chem Res. 2005;44:5491–9.

  20. Sajjadi B, Raman AAA, Arandiyan H. A comprehensive review on properties of edible and non-edible vegetable oil-based biodiesel: composition, specifications and prediction models. Renew Sustain Energy Rev. 2016;63:62–92.

    Article  CAS  Google Scholar 

  21. Leonardo RS, Murta Valle ML, Dweck J. An alternative method by pressurized DSC to evaluate biodiesel antioxidants efficiency. J Therm Anal Calorim. 2012;108:751–9.

    Article  CAS  Google Scholar 

  22. De Sousa LS, De Moura CVR, De Oliveira JE, De Moura EM. Use of natural antioxidants in soybean biodiesel. Fuel. 2014;134:420–8.

    Article  CAS  Google Scholar 

  23. Kumar N. Oxidative stability of biodiesel: causes, effects and prevention. Fuel. 2017;190:328–50.

    Article  CAS  Google Scholar 

  24. Fu J, Turn SQ, Takushi BM, Kawamata CL. Storage and oxidation stabilities of biodiesel derived from waste cooking oil. Fuel. 2016;167:89–97.

    Article  CAS  Google Scholar 

  25. Pan Y, Chen Y, Li Q, Yu X, Wang J, Zheng J. The synthesis and evaluation of novel hydroxyl substituted chalcone analogs with in vitro anti-free radicals pharmacological activity and in vivo anti-oxidation activity in a free radical-injury Alzheimer’s model. Molecules. 2013;18:1693–703.

    Article  CAS  Google Scholar 

  26. Weber WM, Hunsaker LA, Abcouwer SF, Deck LM, Vander Jagt DL. Anti-oxidant activities of curcumin and related enones. Bioorganic Med Chem. 2005;13:3811–20.

    Article  CAS  Google Scholar 

  27. Rasheed L, Hasan A. Synthesis of some benzalacetophenones and their imino derivatives. Asian J Chem. 2007;19:5057–67.

    CAS  Google Scholar 

  28. Lin P, Li B, Li J, Wang H, Bian X, Wang X. Synthesis of sulfonated carbon nanocage and its performance as solid acid catalyst. Catal Lett. 2011;141:459–66.

    Article  CAS  Google Scholar 

  29. Yadav HL, Gupta P, Pawar RS, Singour PK, Patil UK. Synthesis and biological evaluation of anti-inflammatory activity of 1,3 diphenyl propenone derivatives. Med Chem Res. 2011;20:461–5.

    Article  CAS  Google Scholar 

  30. Thangamani A. Regiospecific synthesis and biological evaluation of spirooxindolopyrrolizidines via [3+2] cycloaddition of azomethine ylide. Eur J Med Chem. 2010;45:6120–6.

    Article  CAS  Google Scholar 

  31. Tran TD, Nguyen TTN, Do TH, Huynh TNP, Tran CD, Thai KM. Synthesis and antibacterial activity of some heterocyclic chalcone analogues alone and in combination with antibiotics. Molecules. 2012;17:6684–96.

    Article  CAS  Google Scholar 

  32. Nie A, Huang Z. Microwave-assisted reaction of 2′-hydroxychalcones with hydrazides to synthesize flavanone hydrazone and 4,5-dihydropyrazole derivatives. J Comb Chem. 2006;8:655–8.

    Article  CAS  Google Scholar 

  33. Murphy WS, Wattanasin S. Intramolecular alkylation of phenols. Part 5. A regiospecific anionic ring closure of phenols via quinone methides. J Chem Soc Perkin Trans 1. 1980;0:1567.

  34. Bandgar BP, Gawande SS, Bodade RG, Totre JV, Khobragade CN. Synthesis and biological evaluation of simple methoxylated chalcones as anticancer, anti-inflammatory and antioxidant agents. Bioorganic Med Chem. 2010;18:1364–70.

    Article  CAS  Google Scholar 

  35. Tang H, Wang A, Salley SO, Ng KYS. The effect of natural and synthetic antioxidants on the oxidative stability of biodiesel. J Am Oil Chem Soc. 2008;85:1–10.

    Article  CAS  Google Scholar 

  36. Zhou J, Xiong Y, Xu S. Evaluation of the oxidation stability of biodiesel stabilized with antioxidants using the PetroOXY method. Fuel. 2016;184:808–14.

    Article  CAS  Google Scholar 

  37. Misutsu MY, Cavalheiro LF, Ricci TG, Viana LH, de Oliveira SC, Machulek A. Thermoanalytical methods in verifying the quality of biodiesel. Biofuels. InTech. 2015; 0:251–69

  38. Kohler EP, Chadwell HM, Clarke HT, Leavitt RP. Benzalacetophenone Org Synth. 1922;2:1.

    Article  Google Scholar 

  39. Serqueira DS, Dornellas RM, Silva LG, De Melo PG, Castellan A, Ruggiero R. Tetrahydrocurcuminoids as potential antioxidants for biodiesels. Fuel. 2015;160:490–4.

    Article  CAS  Google Scholar 

  40. Fernandes DM, Sousa RMF, De Oliveira A, Morais SAL, Richter EM, Muñoz RAA. Moringa oleifera: a potential source for production of biodiesel and antioxidant additives. Fuel. 2015;146:75–80.

    Article  CAS  Google Scholar 

  41. Leonardo RS, Murta Valle ML, Dweck J. The thermal processing in air of ethylic soybean biodiesel after accelerated aging, with and without antioxidant. J Therm Anal Calorim. 2018;131:343–52.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to CAPES, CNPq (310415/2015-2) and FAPERGS for funding this research.

Author information

Authors and Affiliations

Authors

Contributions

L.M.B. and C.C.S. took part in conceptualization; S.C.F. and B.N.R. designed the methodology; C.T.R. carried out formal analysis and investigation; L.M.B. wrote original draft; M.A.Z.S wrote, reviewed and edited the final manuscript; C.M.P.P. and E.P. obtained funding acquisition; F.M.A. obtained resources.

Corresponding author

Correspondence to Claudio M. P. de Pereira.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berneira, L.M., Rockembach, C.T., da Silva, C.C. et al. Employment of thermal analysis applied to the oxidative stability evaluation of biodiesel using chalcone analogues. J Therm Anal Calorim 146, 1473–1482 (2021). https://doi.org/10.1007/s10973-020-10189-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10189-w

Keywords

Navigation