Skip to main content

Influence of Pyrogallol (PY) Antioxidant in the Fuel Stability of Alexandrian Laurel Biodiesel

  • Chapter
  • First Online:
Energy Recovery Processes from Wastes

Abstract

The biodiesel quality can be maintained by the most significant criteria called ‘Storage oxidation stability.’ The chief technical blockage related with the commercialization of biodiesel is the poor oxidation stability. The investigation of present paper involves the effects of pyrogallol (PY) antioxidant which helps to maintain the thermal stability, accelerated stability, and storage stability for a long tenure by additive concentration. For different concentrations of PY, the C–H bonds and O–H bonds regions following the biodiesel oxidation variability can be characterized by the Fourier-transform infrared (FTIR) spectroscopy. The stability for oxidation can be increased by 95.67%, stability for storage by 15.42% and stability for thermal by 71.24% were obtained by adding up of PY at 950 ppm concentration (B100P3) enhanced with biodiesel which is in pure nature. Further concentration of antioxidant leads to the deterioration of hydrophilic and hydrophobic clusters formation which is characterized by the FTIR spectrum data. From the investigation, it is came to a conclusion that by dosing 950 ppm of PY antioxidant the Alexandrian laurel biodiesel could be accumulated over a long period of time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

FTIR:

Fourier-transform infra red

PY:

Pyrogallol

TGA:

Thermogravimetric analyzer

T ON :

Onset temperature

References

  1. Shameer, P. M., Ramesh, K., Sakthivel, R., & Purnachandran, R. (2017). Effects of fuel injection parameters on emission characteristics of diesel engines operating on various biodiesel: A review. Renewable and Sustainable Energy Reviews, 67, 1267–1281. https://doi.org/10.1016/j.rser.2016.09.117.

    Article  CAS  Google Scholar 

  2. Shameer, P. M., Ramesh, K., Sakthivel, R., & Purnachandran, R. (2016). Assessment on the influence of compression ratio on the performance, emission and combustion characteristics of diesel engine fuelled with biodiesel. Asian Journal of Research in Social Sciences and Humanities, 6(12), 344–372. https://doi.org/10.5958/22497315.2016.01297.1.

    Article  Google Scholar 

  3. BP Statistical Review of World Energy (2016, June). (65th edn). https://www.bp.com/content/dam/bp/pdf/energy-economics/statistical-review-2016/bp-statistical-review-of-world-energy-2016-full-report.pdf. Accessed Aug 3, 2017.

  4. Shameer, P. M., & Ramesh, K. (2017). Experimental evaluation on performance, combustion behavior and influence of in-cylinder temperature on NOx emission in a D.I. diesel engine using thermal imager for various alternate fuel blends. Energy, 118, 1334–1344. https://doi.org/10.1016/j.energy.2016.11.017.

    Article  CAS  Google Scholar 

  5. Shameer, P. M., Ramesh, K., Purnachandran, R., & Sakthivel, R. (2017). Effects of injection timing and injection pressure on biodiesel fuelled engine performance characteristics: A review. Asian Journal of Research in Social Sciences and Humanities, 7(2), 310–330. https://doi.org/10.5958/2249-7315.2017.00093.4.

    Article  Google Scholar 

  6. Pullen, J., & Saeed, K. (2012). An overview of biodiesel oxidation stability. Renewable and Sustainable Energy Reviews, 16, 5924–5950. https://doi.org/10.1016/j.rser.2012.06.024.

    Article  CAS  Google Scholar 

  7. Yaakob, Z., Narayanan, B. N., Padikkaparambil, S., Unni, K. S., & Akbar, M. (2014). A review on the oxidation stability of biodiesel. Renewable and Sustainable Energy Reviews, 35, 136–153.

    Article  CAS  Google Scholar 

  8. Pullen, J., & Saeed, K. (2012). An overview of biodiesel oxidation stability. Renewable and Sustainable Energy Reviews, 16, 5924–5950. https://doi.org/10.1016/j.rser.2012.06.024.

    Article  CAS  Google Scholar 

  9. Yaakob, Z., Narayanan, B. N., Padikkaparambil, S., Unni, K. S., & Akbar, M. (2014). A review on the oxidation stability of biodiesel. Renewable and Sustainable Energy Reviews, 35, 136–153. https://doi.org/10.1016/j.rser.2014.03.055.

    Article  CAS  Google Scholar 

  10. Atabani, A. E. & da S. Cesar, A. (2014). Calophyllum inophyllum L.—A prospective non-edible biodiesel feedstock. Study of biodiesel production, properties, fatty acid composition, blending and engine performance. Renewable & Sustainable Energy Reviews, 37, 644–655, http://dx.doi.org/10.1016/j.rser.2014.05.037.

  11. Shameer, P. M., Ramesh, K., Sakthivel, R., & Purnachandran, R. (2017). Experimental evaluation on oxidation stability of biodiesel/diesel blends with alcohol addition by Rancimat instrument and FTIR spectroscopy. Journal of Mechanical Science and Technology, 31 (1), 455–463. https://doi.org/10.1007/s12206-016-1248-5.

    Article  Google Scholar 

  12. Shameer, P. M., Ramesh, K., Sakthivel, R., & Purnachandran, R. (2016). Assessment on the influence of compression ratio on the performance, emission and combustion characteristics of diesel engine fuelled with biodiesel. Asian Journal of Research in Social Sciences and Humanities, 6(12), 344–372. https://doi.org/10.5958/2249-7315.2016.01297.1.

    Article  Google Scholar 

  13. Shameer, P. M., Ramesh, K., Purnachandran, R., & Sakthivel, R. (2017). Effects of injection timing and injection pressure on biodiesel fuelled engine performance characteristics: A review. Asian Journal of Research in Social Sciences and Humanities, 7(2), 310–330. https://doi.org/10.5958/2249-7315.2017.00093.4.

    Article  Google Scholar 

  14. Shameer, P. M., Ramesh, K., Sakthivel, R., & Purnachandran, R. (2017). Experimental evaluation on oxidation stability of biodiesel/diesel blends with alcohol addition by Rancimat instrument and FTIR spectroscopy. Journal of Mechanical Science and Technology, 31(1), 455–463. https://doi.org/10.1007/s12206-016-1248-5.

    Article  Google Scholar 

  15. Shameer, P. M., & Ramesh, K. (2017). FTIR evaluation on the fuel stability of Calophyllum inophyllum biodiesel: Influence of tertbutylhydroquinone (TBHQ) antioxidant. Journal of Mechanical Science and Technology, 31(7), 3611–3617. https://doi.org/10.1007/s12206-017-0648-5.

    Article  Google Scholar 

  16. Saluja, R. K., Kumar, V., & Sham, R. (2016). Stability of biodiesel—A review. Renewable and Sustainable Energy Reviews, 62, 866–881. https://doi.org/10.1016/j.rser.2016.05.001.

    Article  CAS  Google Scholar 

  17. Furlan, P. Y., Wetzel, P., Johnson, S., Wedin, J., & Och, A. (2010). Investigating the oxidation of biodiesel from used vegetable oil by FTIR spectroscopy: Used vegetable oil biodiesel oxidation study by FTIR. Spectroscopy Letters, 43, 580–585. https://doi.org/10.1080/00387010.2010.510708.

    Article  CAS  Google Scholar 

  18. Shameer, P. M., & Ramesh, K. (2017). Experimental evaluation on performance, combustion behavior and influence of in cylinder temperature on NOx emission in a D.I. diesel engine using thermal imager for various alternate fuel blends. Energy, 118, 1334–1344. http://dx.doi.org/10.1016/j.energy.2016.11.017.

  19. Mohamed Shameer, P., & Ramesh, K. (2017). Study on clean technology-assisted combustion behavior and NOx emission using thermal imager for alternate fuel blends. International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-017-1353-8.

    Article  CAS  Google Scholar 

  20. Saluja, R. K., Kumar, V., & Sham, R. (2016). Stability of biodiesel—A review. Renewable and Sustainable Energy Reviews, 62, 866–881. https://doi.org/10.1016/j.rser.2016.05.001.

    Article  CAS  Google Scholar 

  21. Nik, W. B. W., Ani, F. N., & Masjuki, H. H. (2005). Thermal stability evaluation of palm oil as energy transport media. Energy Conversion and Management, 46, 2198–2215. https://doi.org/10.1016/j.enconman.2004.10.008.

    Article  CAS  Google Scholar 

  22. Jain, S., & Sharma, M. P. A. L. (2011). Thermal stability of biodiesel and its blends: A review. Renewable and Sustainable Energy Reviews, 15, 438–448. https://doi.org/10.1016/j.rser.2010.08.022.

    Article  CAS  Google Scholar 

  23. Shameer, P. M., Ramesh, K., Sakthivel, R., & Purnachandran, R. (2017). Effects of fuel injection parameters on emission characteristics of diesel engines operating on various biodiesel: A review. Renewable and Sustainable Energy Reviews, 67, 1267–1281. https://doi.org/10.1016/j.rser.2016.09.117.

    Article  CAS  Google Scholar 

  24. Shameer, P. M., Ramesh, K., Sakthivel, R., & Purnachandran, R. (2016). Assessment on the influence of compression ratio on the performance, emission and combustion characteristics of diesel engine fuelled with biodiesel. Asian Journal of Research in Social Sciences and Humanities, 6(12), 344–372. https://doi.org/10.5958/2249-7315.2016.01297.1.

    Article  Google Scholar 

  25. Shameer, P. M., & Ramesh, K. (2017). Green technology and performance consequences of an eco-friendly substance on a 4-stroke diesel engine at standard injection timing and compression ratio. Journal of Mechanical Science and Technology, 31(3), 1497–1507. https://doi.org/10.1007/s12206-017-0249-3.

    Article  Google Scholar 

  26. Nik, W. B. W., Ani, F. N., & Masjuki, H. H. (2005). Thermal stability evaluation of palm oil as energy transport media. Energy Conversion and Management, 46, 2198–2215. https://doi.org/10.1016/j.enconman.2004.10.008.

    Article  CAS  Google Scholar 

  27. Karavalakis, G., Hilari, D., Givalou, L., Karonis, D., & Stournas, S. (2011). Storage stability and ageing effect of biodiesel blends treated with different antioxidants. Energy, 36, 369–374. https://doi.org/10.1016/j.energy.2010.10.029.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Mohamed Nishath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohamed Nishath, P. et al. (2020). Influence of Pyrogallol (PY) Antioxidant in the Fuel Stability of Alexandrian Laurel Biodiesel. In: Ghosh, S. (eds) Energy Recovery Processes from Wastes. Springer, Singapore. https://doi.org/10.1007/978-981-32-9228-4_6

Download citation

Publish with us

Policies and ethics