Skip to main content
Log in

A study on the pyrolysis mechanism of a β-O-4 lignin dimer model compound using DFT combined with Py-GC/MS

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Lignin is abundant in natural world, and it can be converted into value-added chemicals by thermo-chemical method. Since the insufficient understanding of the lignin pyrolysis mechanism limits practical application of lignin pyrolysis, it is quite important to deeply understand the mechanism of lignin pyrolysis from the molecular level. In this work, 1-(4-hydroxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)-1-ethanol was chosen as a β-O-4 type dimer model compound of lignin. Combining the density functional theory (DFT) method with Py-GC/MS to analyze the pyrolysis behavior of lignin dimer model compound, 9 reasonable reaction paths were studied by DFT. The results showed that 2-methoxy-4-vinylphenol (P3) and 2-methoxyphenol (P4) are the main products of lignin dimer model compound pyrolysis. The kinetic and thermodynamics analysis indicates the homolytic cleavage of Cβ–O is the initial reaction step for forming P3 and P4. In the subsequent reactions, P3 is mainly formed by hydrogenation and then dehydration. P4 is mainly formed by hydrogenation. Increasing temperature can promote the spontaneous reaction of the main paths. The exploration for the pyrolysis mechanism of lignin dimer is helpful to directionally regulate lignin pyrolysis products in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ghalibaf M, Doddapaneni T, Alen R. Pyrolytic behavior of lignocellulosic-based polysaccharides. J Therm Anal Calorim. 2019;137(1):121–31. https://doi.org/10.1007/s10973-018-7919-y.

    Article  CAS  Google Scholar 

  2. Huang B, Xie X, Yang Y, Rahman MM, Zhang X, Yu X, et al. Reaction chemistry and kinetics of corn stalk pyrolysis without and with Ga/HZSM-5. J Therm Anal Calorim. 2018;137(2):491–500. https://doi.org/10.1007/s10973-018-7962-8.

    Article  CAS  Google Scholar 

  3. Zhao YY, Yang XX, Fu ZW, Li R, Wu YL. Synergistic effect of catalytic co-pyrolysis of cellulose and polyethylene over HZSM-5. J Therm Anal Calorim. 2020;140(1):363–71. https://doi.org/10.1007/s10973-019-08633-7.

    Article  CAS  Google Scholar 

  4. Jiang XY, Lu Q, Hu B, Liu J, Dong CQ, Yang YP. Intermolecular interaction mechanism of lignin pyrolysis: a joint theoretical and experimental study. Fuel. 2018;215:386–94. https://doi.org/10.1016/j.fuel.2017.11.084.

    Article  CAS  Google Scholar 

  5. Shaw A, Zhang XL. Density functional study on the thermal stabilities of phenolic bio-oil compounds. Fuel. 2019;255:115732. https://doi.org/10.1016/j.fuel.2019.115732.

    Article  CAS  Google Scholar 

  6. Jiang XY, Lu Q, Hu B, Chen DY, Liu J, Dong CQ. Influence of inherent alkali metal chlorides on pyrolysis mechanism of a lignin model dimer based on DFT study. J Therm Anal Calorim. 2018;137(1):151–60. https://doi.org/10.1007/s10973-018-7920-5.

    Article  CAS  Google Scholar 

  7. Hossain MA, Phung TK, Rahaman MS, Tulaphol S, Jasinski JB, Sathitsuksanoh N. Catalytic cleavage of the beta-O-4 aryl ether bonds of lignin model compounds by Ru/C catalyst. Appl Catal A Gen. 2019;582:117100. https://doi.org/10.1016/j.apcata.2019.05.034.

    Article  CAS  Google Scholar 

  8. Jiang WK, Wu SB. Mechanism study on depolymerization of the alpha-o-4 linkage lignin model compound in supercritical ethanol system. Waste Biomass Valoriz. 2019;10(1):197–204. https://doi.org/10.1007/s12649-017-0030-y.

    Article  CAS  Google Scholar 

  9. Jiang XY, Lu Q, Hu B, Liu J, Dong CQ, Yang YP. A comprehensive study on pyrolysis mechanism of substituted β-o-4 type lignin dimers. Int J Mol Sci. 2017;18(11):2364. https://doi.org/10.3390/ijms18112364.

    Article  CAS  PubMed Central  Google Scholar 

  10. Wang SR, Ru B, Dai GX, Shi ZJ, Zhou JS, Luo ZY, et al. Mechanism study on the pyrolysis of a synthetic beta-O-4 dimer as lignin model compound. Proc Combust Inst. 2017;36(2):2225–33. https://doi.org/10.1016/j.proci.2016.07.129.

    Article  CAS  Google Scholar 

  11. Jiang WK, Wu SB, Lucia LA, Chu JY. A comparison of the pyrolysis behavior of selected beta-O-4 type lignin model compounds. J Anal Appl Pyrolysis. 2017;125:185–92. https://doi.org/10.1016/j.jaap.2017.04.003.

    Article  CAS  Google Scholar 

  12. Zhang M, Resende FLP, Moutsoglou A, Raynie DE. Pyrolysis of lignin extracted from prairie cordgrass, aspen, and Kraft lignin by Py-GC/MS and TGA/FTIR. J Anal Appl Pyrolysis. 2012;98:65–71. https://doi.org/10.1016/j.jaap.2012.05.009.

    Article  CAS  Google Scholar 

  13. Liu Y, Liu Y, Lyu GJ, Ji XX, Yang GH, Chen JC, et al. Analytical pyrolysis pathways of guaiacyl glycerol-beta-guaiacyl ether by Py-GC/MS. BioResources. 2016;11(3):5816–28. https://doi.org/10.15376/biores.11.3.5816-5828.

    Article  CAS  Google Scholar 

  14. SriBala G, Carstensen HH, Van Geem KM, Marin GB. Measuring biomass fast pyrolysis kinetics: state of the art. Wiley Interdiscip Rev Energy Environ. 2019;8(2):e326. https://doi.org/10.1002/wene.326.

    Article  CAS  Google Scholar 

  15. Li HL, Song GY. Ru-catalyzed hydrogenolysis of lignin: base-dependent tunability of monomeric phenols and mechanistic study. ACS Catal. 2019;9(5):4054–64. https://doi.org/10.1021/acscatal.9b00556.

    Article  CAS  Google Scholar 

  16. Wang SZ, Gao W, Li HL, Xiao LP, Sun RC, Song GY. Selective fragmentation of biorefinery corncob lignin into p-hydroxycinnamic esters with a supported zinc molybdate catalyst. Chemsuschem. 2018;11(13):2114–23. https://doi.org/10.1002/cssc.201800455.

    Article  CAS  PubMed  Google Scholar 

  17. Xiao LP, Wang SZ, Li HL, Li ZW, Shi ZJ, Xiao L, et al. Catalytic hydrogenolysis of lignins into phenolic compounds over carbon nanotube supported molybdenum oxide. ACS Catal. 2017;7(11):7535–42. https://doi.org/10.1021/acscatal.7b02563.

    Article  CAS  Google Scholar 

  18. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, revision D.01. Wallingford: Gaussian Inc; 2013.

    Google Scholar 

  19. Huang JB, Wu SB, Cheng H, Lei M, Liang JJ, Tong H. Theoretical study of bond dissociation energies for lignin model compounds. J Fuel Chem Technol. 2015;43(4):429–36. https://doi.org/10.1016/s1872-5813(15)30011-6.

    Article  CAS  Google Scholar 

  20. Jiang WK, Wu SB, Lucia LA, Chu JY. Effect of side-chain structure on hydrothermolysis of lignin model compounds. Fuel Process Technol. 2017;166:124–30. https://doi.org/10.1016/j.fuproc.2017.06.004.

    Article  CAS  Google Scholar 

  21. Li P, Chen L, Wang XH, Yang HP, Shao JG, Chen HP. Effects of oxygen-containing substituents on pyrolysis characteristics of beta-O-4 type model compounds. J Anal Appl Pyrolysis. 2016;120:52–9. https://doi.org/10.1016/j.jaap.2016.04.009.

    Article  CAS  Google Scholar 

  22. Johnson ER, Clarkin OJ, DiLabio GA. Density functional theory based model calculations for accurate bond dissociation enthalpies. 3. A single approach for X-H, X–X, and X–Y (X, Y) C, N, O, S, halogen) bonds. J Phys Chem. 2003;107:9953–63.

    Article  CAS  Google Scholar 

  23. Huang JB, Liu C, Jin QJ, Tong H, Li WM, Wu D. Density functional theory study on bond dissociation enthalpies for lignin dimer model compounds. J Renew Sustain Energy. 2014;6(3):033116. https://doi.org/10.1063/1.4880213.

    Article  CAS  Google Scholar 

  24. Huang JB, Liu C, Wu D, Tong H, Ren LR. Density functional theory studies on pyrolysis mechanism of beta-O-4 type lignin dimer model compound. J Anal Appl Pyrolysis. 2014;109:98–108. https://doi.org/10.1016/j.jaap.2014.07.007.

    Article  CAS  Google Scholar 

  25. Jarvis MW, Daily JW, Carstensen HH, Dean AM, Sharma S, Dayton DC, et al. Direct detection of products from the pyrolysis of 2-phenethyl phenyl ether. J Phys Chem A. 2011;115(4):428–38. https://doi.org/10.1021/jp1076356.

    Article  CAS  PubMed  Google Scholar 

  26. Tang B, Wang YT, Peng XL, Zhang LH, Jia CS. Efficient predictions of Gibbs free energy for the gases CO, BF, and gaseous BBr. J Mol Struct. 2020;1199:5. https://doi.org/10.1016/j.molstruc.2019.126958.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2018YFC1902101), the Beijing Forestry University hot spot tracking project (Grant Number 200-121701284) and the National Natural Science Foundation of China (Nos. 21838006 and 21776159).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rui Li or Yulong Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4488 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Q., Fu, Z., Li, R. et al. A study on the pyrolysis mechanism of a β-O-4 lignin dimer model compound using DFT combined with Py-GC/MS. J Therm Anal Calorim 146, 1751–1761 (2021). https://doi.org/10.1007/s10973-020-10130-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10130-1

Keywords

Navigation