Skip to main content
Log in

Heat convection in micropolar nanofluid through porous medium-filled rectangular open enclosure: effect of an embedded heated object with different geometries

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A numerical investigation has been performed to analyze heat convection through a micropolar nanofluid in an open rectangular enclosure filled with a porous medium. The enclosure is embedded with a heated object and having a heated non-planar bottom wall. Three different shapes of the embedded heated object, diamond-shaped, L-shaped, and triangular-shaped, are considered, and their effects are compared numerically. Successive over-relaxation method coupled with Gauss–Seidel iteration technique are employed in order to numerically tackle the nonlinear model momentum and energy equations. The outcomes are discussed in terms of streamlines, isotherms, and isolines of microrotation, averaged Nusselt number on the heated wall for different values of intricated parameters. The calibrated parameters Darcy number, vortex viscosity, Rayleigh number, and volume fraction of nanoparticles, respectively, are taken in the range 0.0001 ≤ Da ≤ 0.1, 0.5 ≤ K ≤ 5.0, 104 ≤ Ra ≤ 106, and 0 ≤ φ ≤ 0.04. It reveals that in the absence of heated object, the non-planarity of the wall lessens the heat transfer rate by 12.95% (when compared to the planar wall). The impact of the shape of the embedded heated object on the heat transfer rate is estimated and found an enhancement of 15.34%, 11.63%, 13.51% for diamond-shaped, L-shaped, and triangular-shaped objects, respectively. Increasing the Darcy number boosts the heat transfer rate while an upsurge in the vortex viscosity parameter lessens the heat transfer rate. The Nusselt number in the enclosure with and without a heated object (depending on the volume fraction of nanoparticles) is also computed numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

\(c_{\text{p}}\) :

Specific heat capacity (J kg−1 K−1)

Da:

Darcy number (–)

H :

Height of the enclosure (m)

j :

Micro-inertia density (m−2)

k :

Coefficient of thermal conductivity (W m−1 K−1)

K :

Dimensionless vortex viscosity (–)

N* :

Angular velocity (s−1)

N :

Dimensionless angular velocity vector normal to the xy plane (–)

Nu:

Nusselt number (–)

Pr:

Prandtl number (–)

Ra:

Rayleigh number (–)

\(T^{*}\) :

Dimensional temperature (K)

\(u^{*}\), \(v^{*}\) :

Dimensional velocity component along x and y-axis (m s−1)

u, v :

Dimensionless velocity component along x and y-axis (–)

\(u_{\text{in}}\) :

Inlet velocity (m s−1)

\(x^{*} ,y^{*}\) :

Dimensional Cartesian coordinates (m)

x, y :

Dimensionless Cartesian coordinates (–)

\(\alpha\) :

Thermal diffusivity (m2 s−1)

\(\beta\) :

Coefficient of volumetric thermal expansion (K−1)

\(\xi ,\eta\) :

Coordinates of the computational domain in the dimensionless form (–)

\(\theta\) :

Dimensionless temperature (–)

κ :

Vortex viscosity (m−1 s−1)

\(\mu\) :

Dynamic viscosity (kg m−1 s−1)

\(\rho\) :

Density (kg m−3)

\(\upsilon\) :

Kinematic viscosity (m2 s−1)

\(\varphi\) :

Volume fraction of nanoparticle (–)

\(\chi\) :

Material parameter (–)

\(\omega\) :

Dimensionless vorticity (–)

ave:

Average

f:

Base fluid

nf:

Nanofluid

p:

Particle, pressure

References

  1. Nield DA, Bejan A. Convection in porous media. 3rd ed. Berlin: Springer; 2006.

    Google Scholar 

  2. Alhashash A, Saleh H. Natural convection induced by undulated surfaces in a porous enclosure filled with nanoliquid. Adv Mech Eng. 2019;11(9):1–9.

    Article  CAS  Google Scholar 

  3. Biswal P, Basak T. Heatlines visualization of convective heat flow during differential heating of porous enclosures with concave/convex side walls. Int J Numer Methods Heat Fluid Flow. 2018;28:1506–38.

    Article  Google Scholar 

  4. Cheong HT, Sivasankaran S, Bhuvaneswari M. Natural convection in a wavy porous cavity with sinusoidal heating and internal heat generation. Int J Numer Methods Heat Fluid Flow. 2017;27(2):287–309.

    Article  Google Scholar 

  5. Rashed ZZ, Ahmed SE, Aly AM. Heat transfer enhancement in the complex geometries filled with porous media. Therm Sci. 2019. https://doi.org/10.2298/TSCI181218166R.

    Article  Google Scholar 

  6. Sharma MK, Manjeet C. Nanofluid flow and heat convection in a channel filled with porous medium. J Int Acta Phys Sci. 2017;21:167–88.

    Google Scholar 

  7. Mehryan SAM, Izadi M, Sheremet MA. Analysis of conjugate natural convection within a porous square enclosure occupied with micro polar nanofluid using local thermal non-equilibrium model. J Mol Liq. 2018;250:353–68.

    Article  CAS  Google Scholar 

  8. Biswas N, Manna NK, Datta P, Mahapatra PS. Analysis of heat transfer and pumping power for bottom-heated porous cavity saturated with Cu–water nanofluid. Powder Technol. 2018;326:356–69.

    Article  CAS  Google Scholar 

  9. Torki M, Etesami N. Experimental investigation of natural convection heat transfer of SiO2/water nanofluid inside inclined enclosure. J Therm Anal Calorim. 2020;139:1565–74.

    Article  CAS  Google Scholar 

  10. Dutta S, Goswami N, Pati S, Biswas AK. Natural convection heat transfer and entropy generation in a porous rhombic enclosure: influence of non-uniform heating. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09634-7.

    Article  Google Scholar 

  11. Dogonchi AS, Ismael MA, Chamkha AJ, Ganji DD. Numerical analysis of natural convection of Cu–water nanofuid filling triangular cavity with semi-circular bottom wall. J Therm Anal Calorim. 2019;135(6):3485–97.

    Article  CAS  Google Scholar 

  12. Dutta S, Biswas AK, Pati S. Natural convection heat transfer and entropy generation inside porous quadrantal enclosure with non-isothermal heating at the bottom wall. Numer Heat Transf. 2018;73(4):222–40.

    Article  CAS  Google Scholar 

  13. Dutta S, Biswas AK, Pati S. Numerical analysis of natural convection heat transfer and entropy generation in a porous quadrantal cavity. Int J Numer Methods Heat Fluid Flow. 2019;29(12):4826–49.

    Article  Google Scholar 

  14. Dutta S, Biswas AK. Entropy generation due to natural convection with non-uniform heating of porous quadrantal enclosure—a numerical study. Front Heat Mass Transf. 2018;10(8):1–12.

    Google Scholar 

  15. Astanina MS, Sheremet MA, Oztop HF, Hamdeh NA. MHD natural convection and entropy generation of ferro fluid in an open trapezoidal cavity partially filled with a porous medium. Int J Mech Sci. 2018;136:493–502.

    Article  Google Scholar 

  16. Rundora L, Makinde OD. Effects of suction/injection on unsteady reactive variable viscosity non-Newtonian fluid flow in a channel filled with porous medium. J Petrol Sci Eng. 2013;108:328–35.

    Article  CAS  Google Scholar 

  17. Sheikholeslami M, Shehzad SA. Simulation of water based nanofluid convective flow inside a porous enclosure via non-equilibrium model. Int J Heat Mass Transf. 2018;120:1200–12.

    Article  CAS  Google Scholar 

  18. Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. ASME Fluids Eng Div. 1995;231:99–105.

    CAS  Google Scholar 

  19. Qiu L, Zhu N, Feng Y, Michaelides EE, Żyła G, Jing D, Zhang X, Norris PM, Markides CN, Mahian O. A review of recent advances in thermophysical properties at the nanoscale: from solid state to colloids. Phys Rep. 2020;843:1–81.

    Article  CAS  Google Scholar 

  20. Molana M, Zarrinderafsh V, Chamkha AJ, Izadi S, Rafizadeh S. Magnetohydrodynamics convection in nanofluids filled cavities: a review. Heat Transf Asian Res. 2020;49(23):1418–43.

    Article  Google Scholar 

  21. Bourantas GC, Skouras ED, Loukopoulos VC, Burganos VN. Heat transfer and natural convection of nanofluids in porous media. Eur J Mech B Fluids. 2014;43:45–56.

    Article  Google Scholar 

  22. Sharma MK, Manjeet C, Makinde OD. Flow and heat transfer in nanofluid flow through a cylinder filled with foam porous medium under radial injection. Defect Diffus Forum. 2018;387:166–81.

    Article  Google Scholar 

  23. Mansour MA, Ahmed SE. A Numerical study on natural convection in porous media filled an inclined triangular enclosure with heat source using nanofluid in the presence of heat generation effect. Eng Sci Technol Int J. 2015;18(3):485–95.

    Google Scholar 

  24. Yirga Y, Shankar B. MHD Flow and heat transfer of nanofluids through a porous media due to a stretching sheet with viscous dissipation and chemical reaction effects. Int J Comput Methods Eng Sci Mech. 2015;16(5):275–84.

    Article  CAS  Google Scholar 

  25. Izadi M, Sinaei S, Mehryan SAM, Oztop HF, Abu-Hamdeh N. Natural convection of a nanofluid between two eccentric cylinders saturated by porous material: Buongiorno’s two phase model. Int J Heat Mass Transf. 2018;127:67–75.

    Article  CAS  Google Scholar 

  26. House JM, Beckermann C, Smith TF. Effect of a centered conducting body on natural convection heat transfer in an enclosure. Numer Heat Transf. 1990;18(2):213–25.

    Article  Google Scholar 

  27. Mahmoodi M, Sebdani SM. Natural convection in a square cavity containing a nanofluid and an adiabatic square block at the centre. Superlattices Microstruct. 2012;52(2):261–75.

    Article  CAS  Google Scholar 

  28. Tayebi T, Chamkha AJ. MHD Natural convection heat transfer of hybrid nanofluid in a square enclosure in the presence of a wavy circular conductive cylinder. J Therm Sci Eng Appl. 2020. https://doi.org/10.1115/1.4044857.

    Article  Google Scholar 

  29. Bendaraa A, Charafi MM, Hasnaoui A. Numerical study of natural convection in a differentially heated square cavity filled with nanofluid in the presence of fins attached to walls in different locations. Phys Fluids. 2019. https://doi.org/10.1063/1.5091709.

    Article  Google Scholar 

  30. Roy NC. Flow and heat transfer characteristics of a nanofluid between a square enclosure and a wavy wall obstacle. Phys Fluids. 2019. https://doi.org/10.1063/1.5111517.

    Article  Google Scholar 

  31. Akar S, Rashidi S, Esfahani JA. Second law of thermodynamic analysis for nanofluid turbulent flow around a rotating cylinder. J Therm Anal Calorim. 2018;132:1189–200.

    Article  CAS  Google Scholar 

  32. Rashidi S, Akbarzadeh M, Karimi N, Masoodi R. Combined effects of nanofluid and transverse twisted-baffles on the flow structures, heat transfer and irreversibilities inside a square duct—a numerical study. Appl Therm Eng. 2018;130:135–48.

    Article  CAS  Google Scholar 

  33. Laein RP, Rashidi S, Esfahani JA. Experimental investigation of nanofluid free convection over the vertical and horizontal flat plates with uniform heat flux by PIV. Adv Powder Technol. 2016;27(2):312–22.

    Article  CAS  Google Scholar 

  34. Giwa SO, Sharifpur M, Ahmadi MH, Meyer JP. A review of magnetic field influence on natural convection heat transfer performance of nanofluids in square cavities. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09832-3.

    Article  Google Scholar 

  35. Bovand M, Rashidi S, Esfahani JA. Optimum interaction between magnetohydrodynamics and nanofluid for thermal and drag management. J Thermophys Heat Transf. 2016;31:218–29.

    Article  Google Scholar 

  36. Rashidi S, Bovand M, Esfahani JA, Ahmadi G. Discrete particle model for convective AL2O3-water nanofluid around a triangular obstacle. Appl Therm Eng. 2016;100:39–54.

    Article  CAS  Google Scholar 

  37. Maskaniyan M, Rashidi S, Esfahani JA. A two-way couple of Eulerian–Lagrangian model for particle transport with different sizes in an obstructed channel. Powder Technol. 2017;312(1):260–9.

    Article  CAS  Google Scholar 

  38. Rashidi S, Bovand M, Esfahan JA. Structural optimization of nanofluid flow around an equilateral triangular obstacle. Energy. 2015;88(1):385–98.

    Article  CAS  Google Scholar 

  39. Bovand M, Rashidi S, Ahmadi G, Esfahani JA. Effects of trap and reflect particle boundary conditions on particle transport and convective heat transfer for duct flow—a two-way coupling of Eulerian–Lagrangian model. Appl Therm Eng. 2016;108:368–77.

    Article  CAS  Google Scholar 

  40. Sheremet M, Pop I, Öztop HF, Abu-Hamdeh N. Natural convection of nanofluid inside a wavy cavity with a non-uniform heating entropy generation analysis. Int J Numer Methods Heat Fluid Flow. 2017;27(4):958–80.

    Article  Google Scholar 

  41. Oztop HF, Abu-Nada E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int J Heat Fluid Flow. 2008;29(5):1326–36.

    Article  Google Scholar 

  42. Selimefendigil F, Öztop HF. Mixed convection of nanofluids in a three-dimensional cavity with two adiabatic inner rotating cylinders. Int J Heat Mass Transf. 2018;117:331–43.

    Article  CAS  Google Scholar 

  43. Bondareva NS, Sheremet MA, Oztop HF, Abu-Hamdeh N. Entropy generation due to natural convection of a nanofluid in a partially open triangular cavity. Adv Powder Technol. 2017;28(1):244–55.

    Article  CAS  Google Scholar 

  44. Eringen AC. Simple microfluids. Int J Eng Sci. 1964;2:205–17.

    Article  Google Scholar 

  45. Eringen AC. Theory of micropolar fluids. J Math Mech. 1966;16:1–18.

    Google Scholar 

  46. Papautsky I, Brazzle J, Ameel T, Frazier AB. Laminar fluid behavior in micro-channel using micropolar fluid theory. Sens Actuators. 1999;73:101–8.

    Article  CAS  Google Scholar 

  47. Aydin O, Pop I. Natural convection from a discrete heater in enclosures filled with a micropolar fluid. Int J Eng Sci. 2005;43(19–20):1409–18.

    Article  CAS  Google Scholar 

  48. Rashad AM, Mansour MA, Gorla RSR. Mixed convection from a discrete heater in lid-driven enclosures filled with non-Newtonian nanofluids. J Nanomater Nanoeng Nanosyst. 2017;231(1):3–16.

    CAS  Google Scholar 

  49. Reddy CS, Prasad VR, Jayalakshmi K. Numerical simulation of natural convection of micropolar fluid in a rectangular porous enclosure. IJITEE. 2019;8(4S):329–39.

    Google Scholar 

  50. Maripala S, Kishan N. Micropolar nanofluid over a MHD heat transfer porous shrinking sheet. Int J Math Appl. 2017;9(4-B):211–7.

    Google Scholar 

  51. Pordanjani AH, Jahanbakhshi A, Nadooshan AA, Afrand M. Effect of two isothermal obstacles on the natural convection of nanofluid in the presence of magnetic field inside an enclosure with sinusoidal wall temperature distribution. Int J Heat Mass Transf. 2018;121:565–78.

    Article  CAS  Google Scholar 

  52. Maxwell JC. A treatise on electricity and magnetism. 2nd ed. London: Oxford University Press; 1904.

    Google Scholar 

  53. Brinkman HC. The viscosity of concentrated suspensions and solutions. J Chem Phys. 1952;20:571–81.

    Article  CAS  Google Scholar 

  54. Seyyedi SM, Dayyan M, Soleimani S, Ghasemi E. Natural convection heat transfer under constant heat flux wall in a nanofluid filled annulus enclosure. Ain Shams Eng J. 2015;6(1):267–80.

    Article  Google Scholar 

  55. Saleem M, Hossain MA, Saha SC. Mixed convection flow of micropolar fluid in an open-ended arc-shape cavity. J Fluids Eng Trans ASME. 2012. https://doi.org/10.1115/1.4007268.

    Article  Google Scholar 

  56. Bakar NA, Karimipour A, Roslan R. Effect of magnetic field on mixed convection heat transfer in a lid-driven square cavity. J Thermodyn. 2016. https://doi.org/10.1155/2016/3487182.

    Article  Google Scholar 

  57. Jani S, Mahmoodi M, Amini M. Magnetohydrodynamic free convection in a square cavity heated from below and cooled from other walls. Int J Mech Aero Ind Mech Manuf Eng. 2013;7(4):329–34.

    Google Scholar 

  58. Morshed KN, Sharif MAR, Islam AW. Laminar mixed convection in a lid-driven square cavity with two isothermally heated square internal blockages. Chem Eng Commun. 2015;202(9):1176–90.

    Article  CAS  Google Scholar 

  59. Feng S, Graham AL, Abbott JR, Brenner H. Antisymmetric stresses in suspensions: vortex viscosity and energy dissipation. J Fluids Mech. 2006;563:97–122.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Endalkachew Getachew Ushachew.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ushachew, E.G., Sharma, M.K. & Makinde, O.D. Heat convection in micropolar nanofluid through porous medium-filled rectangular open enclosure: effect of an embedded heated object with different geometries. J Therm Anal Calorim 146, 1865–1881 (2021). https://doi.org/10.1007/s10973-020-10118-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10118-x

Keywords

Navigation