Skip to main content
Log in

Numerical investigation of laminar flow and heat transfer in a channel using combined nanofluids and novel longitudinal vortex generators

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Enhancement of heat transfer in plate-fin heat exchangers can be obtained using vortex generators (VG). The three-dimensional laminar flow of water/Al2O3 nanofluid with different nanoparticle volume fractions in a channel with longitudinal vortex generators is numerically simulated. Two novel forms of modified delta winglet VG pairs (MDWP1, MDWP2) are introduced by adding and subtracting a part of the quadrant profile to the delta winglet VG profile. Simulation is carried out for the classic delta winglet pair (DWP) and MDWPs. Performance of heat transfer and pressure drop is compared as well as the overall performance analysis of channel is conducted for all three forms of VGs and two flow arrangement types, common flow up (CFU) and common flow down (CFD). Analytical expressions from the literature are used to check the validity of the model. Governing equations of laminar fluid flow and heat transfer are solved based on the finite-element method. The range of Reynolds number is from 100 to 500. Results show that in the range of the present study, using nanofluid increases about 20% of the heat transfer coefficient and 18% of pressure drop compared to pure water. As results confirm in all of the cases, the heat transfer coefficient increases using VG. The MDWP2 leads to the highest pressure drop and heat transfer between the three VGs types. It can produce up to 9% higher heat transfer coefficient in Re = 100 and 20% of higher pressure drop for CFD flow arrangement. The overall performance of the CFD arrangement is higher than CFU for the studied cases relatively. And the values of performance in a channel with DWP are greater than MDWP1 and MDWP2, which is due to the lower pressure drop of DWP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

A :

Cross-sectional area, m2

a :

The distance between vortex generator pair and the leading edge of a channel, m

C p :

Specific heat at constant pressure, J(kgK−1)

D h :

Hydraulic diameter, m

f :

Fanning fraction factor, dimensionless

H :

The height of the channel, m

h :

Convective heat transfer coefficient, W(m2K)−1

k :

Thermal conductivity, W(mK)−1

L :

Channel length, m

l :

Vortex generator length, m

n :

Vortex generator height, m

Nu:

Nusselt number, dimensionless

Pr:

Prandtl Number, dimensionless

P :

Pressure, Pa

ΔP :

Pressure drop, Pa

q :

Heat transfer rate, W

q″ :

Heat flux, Wm−2

Re:

Reynolds number, dimensionless

s :

Distance between tips of winglet pair, m

t :

Vortex generator thickness, m

T :

Temperature, K

T b,x :

Bulk temperature at position x, K

U :

Mean flow velocity, m s−1

u :

Flow velocity in x-direction, m s−1

v :

Flow velocity in y-direction, m s−1

w :

Flow velocity in z-direction, m s−1

W :

Channel width, m

x :

Distance from yz-plate, m

\(\mu\) :

Dynamic viscosity, Pa s

\(\rho\) :

Fluid density, kg m−3

\(\theta\) :

Attack angle of vortex generator, °

\(\emptyset\) :

Nanoparticle volume fraction, dimensionless

avr:

Average

b:

Bulk

f:

Fluid, the primary phase

in:

Inlet

nf:

Nanofluid

out:

Outlet

p:

Particle, secondary phase

s:

Surface

References

  1. Ahmed HE, Mohammed HA, Yusoff MZ. An overview on heat transfer augmentation using vortex generators and nanofluids: approaches and applications. Renew Sustain Energy Rev. 2012;16:5951–93.

    Article  CAS  Google Scholar 

  2. Biswas G, Torii K, Fujii D, Nishino K. Numerical and experimental determination of flow structure and heat transfer effects of longitudinal vortices in a channel flow. Int J Heat Mass Transf. 1996;39:3441–51.

    Article  CAS  Google Scholar 

  3. Bergles AE. Heat transfer augmentation. In: Kakaç S, Bergles A, Fernandes EO, editors. TwoPhase flow heat exchangers. Netherlands: Springer; 1988. pp. 343–73.

    Chapter  Google Scholar 

  4. Fiebig M. Vortices and heat transfer. ZAMM J Appl Math Mech für Angew Math Mech. 1997;77:3–18.

    Article  Google Scholar 

  5. Vasudevan R, Eswaran V, Biswas G. Winglet-type vortex generators for plate-fin heat exchangers using triangular fins. Numer Heat Transf Part A Appl. 2000;38:533–55.

    Article  CAS  Google Scholar 

  6. Jacobi AM, Shah RK. Heat transfer surface enhancement through the use of longitudinal vortices: a review of recent progress. Exp Therm Fluid Sci. 1995;11:295–309.

    Article  Google Scholar 

  7. Biswas G, Chattopadhyay H, Sinha A. Augmentation of heat transfer by creation of streamwise longitudinal vortices using vortex generators. Heat Transf Eng. 2012;33:406–24.

    Article  CAS  Google Scholar 

  8. Rashidi S, Eskandarian M, Mahian O, Poncet S. Combination of nanofluid and inserts for heat transfer enhancement. J Therm Anal Calorim. 2019;135:437–60.

    Article  CAS  Google Scholar 

  9. Saha P, Biswas G, Sarkar S. Comparison of winglet-type vortex generators periodically deployed in a plate-fin heat exchanger—a synergy based analysis. Int J Heat Mass Transf. 2014;74:292–305.

    Article  Google Scholar 

  10. Wang J, Zhao Y. Heat and fluid flow characteristics of a rectangular channel with a small diameter circular cylinder as vortex generator. Int J Therm Sci. 2015;92:1–13.

    Article  Google Scholar 

  11. Hosseinirad E, Hormozi F. Thermal performance enhancement in a miniature channel using different passive methods. J Therm Anal Calorim. 2019;135:1849–61.

    Article  CAS  Google Scholar 

  12. Zhou G, Feng Z. Experimental investigations of heat transfer enhancement by plane and curved winglet type vortex generators with punched holes. Int J Therm Sci. 2014;78:26–35.

    Article  Google Scholar 

  13. Min C, Qi C, Wang E, Tian L, Qin Y. Numerical investigation of turbulent flow and heat transfer in a channel with novel longitudinal vortex generators. Int J Heat Mass Transf. 2012;55:7268–77.

    Article  Google Scholar 

  14. Oneissi M, Habchi C, Russeil S, Bougeard D, Lemenand T. Novel design of delta winglet pair vortex generator for heat transfer enhancement. Int J Therm Sci. 2016;109:1–9.

    Article  Google Scholar 

  15. Min C, Qi C, Kong X, Dong J. Experimental study of rectangular channel with modified rectangular longitudinal vortex generators. Int J Heat Mass Transf. 2010;53:3023–9.

    Article  Google Scholar 

  16. Ke Z, Chen C-L, Li K, Wang S, Chen C-H. Vortex dynamics and heat transfer of longitudinal vortex generators in a rectangular channel. Int J Heat Mass Transf. 2019;132:871–85.

    Article  Google Scholar 

  17. Sheikholeslami M, Jafaryar M, Shafee A, Li Z, Haq R. Heat transfer of nanoparticles employing innovative turbulator considering entropy generation. Int J Heat Mass Transf. 2019;136:1233–40.

    Article  CAS  Google Scholar 

  18. Sheikholeslami M, Jafaryar M, Hedayat M, Shafee A, Li Z, Nguyen TK, et al. Heat transfer and turbulent simulation of nanomaterial due to compound turbulator including irreversibility analysis. Int J Heat Mass Transf. 2019;137:1290–300.

    Article  CAS  Google Scholar 

  19. Vanaki SM, Ganesan P, Mohammed HA. Numerical study of convective heat transfer of nanofluids: a review. Renew Sustain Energy Rev. 2016;54:1212–39.

    Article  CAS  Google Scholar 

  20. Kleinstreuer C, Feng Y. Experimental and theoretical studies of nanofluid thermal conductivity enhancement: a review. Nanoscale Res Lett. 2011;6:229.

    Article  Google Scholar 

  21. Trisaksri V, Wongwises S. Critical review of heat transfer characteristics of nanofluids. Renew Sustain energy Rev. 2007;11:512–23.

    Article  CAS  Google Scholar 

  22. Godson L, Raja B, Lal DM, Wongwises S. Enhancement of heat transfer using nanofluids—an overview. Renew Sustain energy Rev. 2010;14:629–41.

    Article  CAS  Google Scholar 

  23. Aghanajafi A, Toghraie D, Mehmandoust B. Numerical simulation of laminar forced convection of water-CuO nanofluid inside a triangular duct. Phys E Low-Dimensional Syst Nanostructures. 2017;85:103–8.

    Article  CAS  Google Scholar 

  24. Abdi H, Asaadi S, Kivi HA, Pesteei SM. A comprehensive numerical study on nanofluid flow and heat transfer of helical, spiral and straight tubes with different cross sections. J Homepage. 2019;37:1031–42.

    Google Scholar 

  25. Ahmed HE, Yusoff MZ, Hawlader MNA, Ahmed MI, Salman BH, Kerbeet AS. Turbulent heat transfer and nanofluid flow in a triangular duct with vortex generators. Int J Heat Mass Transf. 2017;105:495–504.

    Article  CAS  Google Scholar 

  26. Ahmed HE, Ahmed MI, Yusoff MZ, Hawlader MNA, Al-Ani H. Experimental study of heat transfer augmentation in non-circular duct using combined nanofluids and vortex generator. Int J Heat Mass Transf. 2015;90:1197–206.

    Article  CAS  Google Scholar 

  27. Abdollahi A, Shams M. Optimization of heat transfer enhancement of nanofluid in a channel with winglet vortex generator. Appl Therm Eng. 2015;91:1116–26.

    Article  Google Scholar 

  28. Ahmed HE, Mohammed HA, Yusoff MZ. Heat transfer enhancement of laminar nanofluids flow in a triangular duct using vortex generator. Superlattices Microstruct. 2012;52:398–415.

    Article  CAS  Google Scholar 

  29. Khoshvaght-Aliabadi M. Thermal performance of plate-fin heat exchanger using passive techniques: vortex-generator and nanofluid. Heat Mass Transf. 2016;52:819–28.

    Article  CAS  Google Scholar 

  30. Zheng Y, Yang H, Mazaheri H, Aghaei A, Mokhtari N, Afrand M. An investigation on the influence of the shape of the vortex generator on fluid flow and turbulent heat transfer of hybrid nanofluid in a channel. J Therm Anal Calorim. 2020;1:1–14.

    Google Scholar 

  31. Amini Y, Akhavan S, Izadpanah E. A numerical investigation on the heat transfer characteristics of nanofluid flow in a three-dimensional microchannel with harmonic rotating vortex generators. J Therm Anal Calorim. 2020;139:755–64.

    Article  CAS  Google Scholar 

  32. Xuan Y, Li Q. Heat transfer enhancement of nanofluids. Int J heat fluid flow. 2000;21:58–64.

    Article  CAS  Google Scholar 

  33. Brinkman HC. The viscosity of concentrated suspensions and solutions. J Chem Phys AIP. 1952;20:571.

    Article  CAS  Google Scholar 

  34. Rohsenow WM, Hartnett JP, Cho YI. Handbook of heat transfer. New York: McGraw-Hill; 1998.

    Google Scholar 

  35. Bejan A, Kraus AD. Heat transfer handbook. Hoboken: Wiley; 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Soheil Asaadi or Hamid Abdi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asaadi, S., Abdi, H. Numerical investigation of laminar flow and heat transfer in a channel using combined nanofluids and novel longitudinal vortex generators. J Therm Anal Calorim 145, 2795–2808 (2021). https://doi.org/10.1007/s10973-020-09795-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09795-5

Keywords

Navigation