Skip to main content

Heat Transfer Augmentation

  • Chapter
Two-Phase Flow Heat Exchangers

Part of the book series: NATO ASI Series ((NSSE,volume 143))

Abstract

This introductory chapter on the augmentation of convective heat transfer provides background for the many applications of this “second generation heat transfer technology” cited throughout this volume. The many available augmentation techniques are described, and some representative performance data and correlations are given for the popular passive techniques.

The discussion is organized according to the modes of heat transfer, ranging from single-phase forced convection to forced convection condensation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bergles, A. E., Nirmalan, V., Junkhan, G. H., and Webb, R. L., Bibliography on Augmentation of Convective Heat and Mass Transfer — Part II, HTL-31, ISU-ERI-Ames-84222, DE-84018484, Iowa State University, Ames, December 1983.

    Google Scholar 

  2. Webb, R. L., Bergles, A. E., and Junkhan, G. H., Bibliography of U.S. Patents on Augmentation of Convective Heat and Mass Transfer — Part II, HTL-32, ISU-ERI-Ames-84257, DE-84014865, DOE/ID/12222-T1, Iowa State University, Ames, December 1983.

    Google Scholar 

  3. Bergles, A. E., Nelson, R. M., Junkhan, G. H., and Webb, R. L., “Assessment, Development and Coordination of Technology Base Studies in Enhanced Heat Transfer, HTL-33, ISU-ERI-Ames-85024, DE 85004130, Iowa State University, Ames, March 1984.

    Google Scholar 

  4. Bergles, A. E., Techniques to Augment Heat Transfer, Handbook of Heat Transfer Applications, McGraw-Hill, New York, pp. 3–1–3–80, 1985.

    Google Scholar 

  5. Kovacs, G., Application of Short Finned Heat Exchanger as Air-Cooled Condenser, La Revue Generale du Froid, pp. 159–168, February 1963.

    Google Scholar 

  6. Webb, R. L., Air-Side Heat Transfer in Finned Tube Heat Exchangers, Heat Transfer Engineering, Vol. 1, (3), pp. 33–49, 1980.

    Article  Google Scholar 

  7. Ravigururajan, T. S. and Bergles, A. E., General Correlations for Pressure Drop and Heat Transfer for Single-Phase Turbulent Flow in Internally Ribbed Tubes, Augmentation of Heat Transfer in Energy Systems, HTD-Vol. 52, ASME, New York, pp. 9–20, 1985.

    Google Scholar 

  8. Carnavos, T. C., Heat Transfer Performance of Internally Finned Tubes in Turbulent Flow, Advances in Enhanced Heat Transfer, ASME, New York, pp. 61–67, 1979.

    Google Scholar 

  9. Obermeier, E. and Schaber, A., Experimental Investigation of Heat Transfer from Transverse Finned Tubes with Longitudinal Flow, Heat Transfer 1978, Vol. 2, Hemisphere Publishing, Washington, pp. 613–618, 1978.

    Google Scholar 

  10. Clarke, L. and Winston, R. E., Calculation of Finside Coefficients in Longitudinal Finned-Tube Heat Exchangers, Chemical Engineering Progress, Vol. 51, (3), pp. 147–150, 1955.

    Google Scholar 

  11. Pahl, M. H. and Muschelknautz, E., Einsatz and Auslegung Statischer Mischer, Chemie Ingenieur Technik, Vol. 51, pp. 347–364, 1979.

    Article  Google Scholar 

  12. Junkhan, G. H., Bergles, A. E., Nirmalan, V., and Ravigururajan, T., Investigation of Turbulators for Fire Tube Boilers, Journal of Heat Transfer, Vol. 107, pp. 354–360, 1985.

    Article  Google Scholar 

  13. Mascone, C. F., CPI Strive to Improve Heat Transfer in Tubes, Chemical Engineering, pp. 22–25, February 1986.

    Google Scholar 

  14. Nirmalan, V., Junkhan, G. H., and Bergles, A. E., A Basic Surface Renewal/Penetration Model of Heat Transfer in Tubes with Turbulators for Applications in Fire-Tube Boilers, ASHRAE Transactions, Vol. 93, Part 2, 1987.

    Google Scholar 

  15. Manglik, R. M. and Bergles, A. E., A Correlation for Laminar Flow Enhanced Heat Transfer in Uniform Wall Temperature Circular Tubes with Twisted-Tape Inserts, Advances in Enhanced Heat Transfer — 1987, HTD-Vol. 68, ASME, 1987, pp. 19–25.

    Google Scholar 

  16. Hong, S. W. and Bergles, A. E., Augmentation of Laminar Flow Heat Transfer by Means of Twisted-Tape Inserts, Journal of Heat Transfer, Vol. 98, pp. 251–256, 1976.

    Article  Google Scholar 

  17. Lopina, R. F. and Bergles, A. E., Heat Transfer and Pressure Drop in Tape Generated Swirl Flow of Single-Phase Water, Journal of Heat Transfer, Vol. 91, pp. 434–442, 1969.

    Google Scholar 

  18. Schmidt, E. F., Wärmeübergang und Druckverlust in Rohrschlangen, Chemie Ingenieur Technik, Vol. 39, pp. 781–789, 1967.

    Article  Google Scholar 

  19. Webb, R. L., The Evolution of Enhanced Surface Geometries for Nucleate Boiling, Heat Transfer Engineering, Vol. 2, (3–4), pp. 46–69, 1981.

    Article  Google Scholar 

  20. Webb, R. L., Heat Transfer Surface Having a High Boiling Heat Transfer Coefficient, U.S. Patent, 3,696,861, October 10, 1972.

    Google Scholar 

  21. Kakizaki, K. and Suzumura, T., Method of Forming Heat Transmissive Wall Surface, U.S. Patent 3,906,604, September 23, 1975.

    Google Scholar 

  22. Saier, M. Kastner, H.-W., and Klockler, R., Y- and T- Finned Tubes and Methods and Apparatus for Their Making, U.S. Patent, 4,179,911, December 25, 1979.

    Google Scholar 

  23. Fujikake, J., Heat Transfer Tube for Use in Boiling Type Heat Exchangers and Method of Producing the Same, U.S. Patent 4,216,826, August 12, 1980.

    Google Scholar 

  24. Milton, R. M., Heat Exchange System with Porous Boiling Layer, U.S. Patent 3,587,730, June 28, 1971.

    Google Scholar 

  25. Yilmaz, S., Hwalck, J. J., and Westwater, J. N., Pool Boiling Heat Transfer Performance for Commercial Enhanced Tube Surfaces, ASME Paper 80-HT-41, July 1980.

    Google Scholar 

  26. Nakayama, W., Daikoku, T., Kuwahara, H., and Nakajima, T., Dynamic Model of Enhanced Boiling Heat Transfer on Porous Surface - Parts I and II, Journal of Heat Transfer, Vol. 102, pp. 445–456, 1980.

    Article  Google Scholar 

  27. Bergles, A. E. and Chyu, M.-C, Characteristics of Nucleate Pool Boiling from Porous Metallic Coatings, Journal of Heat Transfer, Vol. 104, pp. 279–285, 1982.

    Article  Google Scholar 

  28. Kim, C.-J. and Bergles, A. E., Structured Surfaces for Enhanced Nucleate Boiling, HTL-36, ISU-ERI-Ames-86220, Iowa State University, Ames, December 1985.

    Google Scholar 

  29. Chyu, M.-C. and Bergles, A. E., Enhancement of Horizontal Tube Spray Film Evaporators by Structured Surfaces, Advances in Enhanced Heat Transfer — 1985, HTD-Vol. 43, ASME, New York, pp. 39–48, 1985.

    Google Scholar 

  30. Newson, I. H., Heat Transfer Characteristics of Horizontal Tube Multiple Effect (HTME) Evaporators--Possible Enhanced Tube Profiles, Proc. 6th Int. Symposium Fresh Water from the Sea, Vol. 2, pp. 113–124, 1978.

    Google Scholar 

  31. Cox, R. B., Pascale, A. S., Matta, G. A., and Stromberg, K. S., Pilot Plant Tests and Design Study of a 2.5 MGD Horizontal-Tube Multiple-Effect Plant, Off. Saline Water Res. Dev., Report No 492, October 1969.

    Google Scholar 

  32. Gorenflo, D., Zum Wärmeübergang bei Blasenverdampfung an Rippenrohren, dissertation, Technische Hochschule, Karlsruhe, 1966.

    Google Scholar 

  33. Hesse, G., Heat Transfer in Nucleate Boiling, Maximum Heat Flux and Transition Boiling, Int. Journal of Heat and Mass Transfer, Vol. 16, pp. 1611–1627, 1973.

    Article  Google Scholar 

  34. Corman, J. C. and McLaughlin, M. H., Boiling Heat Transfer with Structured Surfaces, ASHRAE Transactions, Vol. 82, Part 1, pp. 906–918, 1976.

    Google Scholar 

  35. Schultz, V. N., Edwards, D. K., and Catton, I., Experimental Determination of Evaporative Heat Transfer Coefficients on Horizontal, Threaded Tubes, ASHRAE Symposium Series, Vol. 73, (164), pp. 223–227, 1977.

    Google Scholar 

  36. Thomas, D. G. and Young, G., Thin Film Evaporation Enhancement by Finned Surfaces, Ind. Engineering Chemical Process Design Development, Vol. 9, pp. 317–323, 1970.

    Article  Google Scholar 

  37. Linde Division, Union Carbide Corporation, Tonawanda, New York, Technical Information—High Flux Tubing, September 1977.

    Google Scholar 

  38. Withers, J. G. and Habdas, E. P., Heat Transfer Characteristics of Helical Corrugated Tubes for Intube Boiling of Refrigerant R-12, AIChE Symposium Series, Vol. 70, (138), pp. 98–106, 1974.

    Google Scholar 

  39. Swenson, H. S., Carver, J. R., and Szoeke, G., The Effects of Nucleate Boiling Versus Film Boiling on Heat Transfer in Power Boiling Tubes, J. Engineering Power, Vol. 84, pp. 365–371, 1962.

    Google Scholar 

  40. Ackerman, J. W., Pseudoboiling Heat Transfer to Supercritical Pressure Water in Smooth and Ribbed Tubes, Journal of Heat Transfer, Vol. 92, pp. 390–398, 1970.

    Google Scholar 

  41. Quinn, E. P., Transition Boiling Heat Transfer Program, 5th Quarterly Frogress Report, General Electric Atomic Power 4608, 1964.

    Google Scholar 

  42. Dunham-Bush, Ltd., Portsmouth, England, Bulletin R. 45A, 1978.

    Google Scholar 

  43. Wieland-Werke AG. Metallwerke, U/M, Federal Republic of Germany, Bulletin GE4.

    Google Scholar 

  44. Kubanek, G. R. and Miletti, D. L., Evaporative Heat Transfer and Pressure Drop Performance of Internally-Finned Tubes with Refrigerants 22, Journal of Heat Transfer, Vol. 101, pp. 447–452, 1979.

    Article  Google Scholar 

  45. Khanpara, J. C., Bergles, A. E., and Pate, M. B., Augmentation of R-113 In-Tube Evaporation with ASHRAE Transactions, Vol. 92, Part 2B, 1986, pp. 506–524.

    Google Scholar 

  46. Ito, M. and Kimura, H., Boiling Heat Transfer and Pressure Drop in Internal Spiral-Grooved Tubes, Bulletin JSME, Vol. 22, (171), pp. 1251–1257, 1979.

    Article  Google Scholar 

  47. Jensen, M. K. and Bensler, H. P., Saturated Forced-Convective Boiling Heat Transfer with Twisted-Tape Inserts, Journal of Heat Transfer, Vol. 108, pp. 93–99, 1986.

    Article  Google Scholar 

  48. Jensen, M. K., Pourdashti, M., and Bensler, H. P., Two-Phase Pressure Drop with Twisted-Tape Swirl Generators, Int. Journal of Multiphase Flow, Vol. 11, pp. 201–211, 1985.

    Article  Google Scholar 

  49. Cumo, M., Farello, G. E., Ferrari, G., and Palazzi, G., The Influence of Twisted Tapes in Subcritical, Once-Through Vapor Generator in Counter Flow, Journal of Heat Transfer, Vol. 96, pp. 365–370, 1974.

    Article  Google Scholar 

  50. Bergles, A. E., Fuller, W. D., and Hynek, S. J., Dispersed Film Boiling of Nitrogen with Swirl Flow, Int. Journal of Heat and Mass Transfer, Vol. 14, pp. 1343–1354, 1971.

    Article  Google Scholar 

  51. Jensen, M. K. and Bergles, A. E., Critical Heat Flux in Helically Coiled Tubes, Journal of Heat Transfer, Vol. 103, pp. 660–666, 1981.

    Article  Google Scholar 

  52. Glicksman, L. R., Mikic, B. B., and Snow, D. F., Augmentation of Film Condensation on the Outside of Horizontal Tubes, AIChE Journal, Vol. 19, pp. 636–637, 1973.

    Article  Google Scholar 

  53. Desmond, R. M. and Karlekar, B. V., Experimental Observations of a Modified Condenser Tube Design to Enhance Heat Transfer in a Steam Condenser, ASME Paper No. 80-HT-53, 1981.

    Google Scholar 

  54. Medwell, J. O. and Nicol, A. A., Surface Roughness Effects on Condensate Films, ASME Paper 65-HT-43, 1965.

    Google Scholar 

  55. Carnavos, T. C., An Experimental Study: Condensing R-11 on Augmented Tubes, ASME Paper 80-HT-54, 1980.

    Google Scholar 

  56. Beatty, K. O., Jr. and Katz, D. L., Condensation of Vapors on Outside of Finned Tubes, Chemical Engineering Progress, Vol. 44, (1), pp. 55–70, 1948.

    Google Scholar 

  57. Rudy, T. M. and Webb, R. L., Condensate Retention of Horizontal Integral-Fin Tubing, Advances in Enhanced Heat Transfer-1981, HTD-Vol. 18, ASME, New York, pp. 35–41, 1981.

    Google Scholar 

  58. Mori, Y., Hijikata, K., Hirasawa, S., Nakayama, W., Optimized Performance of Condensers with Outside Condensing Surfaces, Journal of Heat Transfer, Vol. 103, pp. 96–102, 1981.

    Article  Google Scholar 

  59. Lewis, L. G. and Sather, N. F., OTEC Performance Tests of the Carnegie-Mellon University Vertical Fluted-Tube Condenser, ANL/OTEC-PS-4, Argonne National Laboratory, May 1979.

    Google Scholar 

  60. Domingo, N., Condensation of Refrigerant-11 on the Outside of Vertical Enhanced Tubes, ORNL/TM-7797, Oak Ridge National Laboratory, August 1981.

    Book  Google Scholar 

  61. Thomas, D. G., Enhancement of Film Condensation Rate on Vertical Tubes by Vertical Wires, Ind. Eng. Chemstry Fundamentals, Vol. 6, pp. 97–103, 1967.

    Article  Google Scholar 

  62. Nakayama, W., Daikoku, T., Kuwahara, H., and Kakizaki, K., High-Flux Heat Transfer Surface “Thermoexcel”, Hitachi Rev., Vol. 24, pp. 329–333, 1975.

    Google Scholar 

  63. Cox, R. B., Matta, G. A., Pascale, A. S., Stromberg, K. G., Second Report on Horizontal Tubes Multiple-Effect Process Pilot Plant Tests and Design, Off. Saline Water Res. Dev., Report No. 592, May 1970.

    Google Scholar 

  64. Luu, M. and Bergles, A. E., Augmentation of In-Tube Condensation of R-113 by Means of Surface Roughness, ASHRAE Transactions, Vol. 87, Part 2, pp. 33–50, 1981.

    Google Scholar 

  65. Fenner, G. W. and Ragi, E., Enhanced Tube Inner Surface Device and Method, U.S. Patent 4,154,293, May 15, 1979.

    Google Scholar 

  66. Royal, J. H. and Bergles, A. E., Augmentation of Horizontal In-Tube Condensation by Means of Twisted-Tape Inserts and Internally-Finned Tubes, Journal of Heat Transfer, Vol. 100, pp. 17–24, 1978.

    Article  Google Scholar 

  67. Luu, M. and Bergles, A. E., Experimental Study of the Augmentation of In-Tube Condensation of R-113, ASHRAE Transactions, Vol. 85, Part 2, pp. 132–145, 1979.

    Google Scholar 

  68. Alexander, L. G. and Hoffman, H. W., Performance Characteristics of Corrugated Tubes for Vertical Tube Evaporators, ASME Paper 71-HT-30, 1971.

    Google Scholar 

  69. Reisbig, R. L., Condensing Heat Transfer Augmentation Inside Splined Tubes, ASME Paper 74-HT-7, July 1974.

    Google Scholar 

  70. J. C. Khanpara, A. E. Bergles, and M. B. Pate, Augmentation of R-113 In-Tube Condensation with Micro-Fin Tubes, Heat Transfer in Air Conditioning and Refrigerating Equipment, HTD-Vol. 65, ASME, 1986, pp. 21–32.

    Google Scholar 

  71. Azer, N. Z., Fan, L. T., and Lin, S. T., Augmentation of Condensation Heat Transfer with In-Line Static Mixers, Proceedings of Heat Transfer Fluid Mech. Inst., pp. 512–526, Stanford University Press, Stanford, 1976.

    Google Scholar 

  72. Fan, L. T., Lin, S. T., and Azer, N. Z., Surface Renewal Model of Condensation Heat Transfer in Tubes with In-Line Static Mixers, Int. J. Heat and Mass Transfer, Vol. 21, pp. 849–854, 1978.

    Article  Google Scholar 

  73. Miropolskii, Z. L. and Kurbanmukhamedov, A., Heat Transfer with Condensation of Steam Within Coils, Thermal Engineering, No. 5, pp. 111–114, 1975.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Bergles, A.E. (1988). Heat Transfer Augmentation. In: Kakaç, S., Bergles, A.E., Fernandes, E.O. (eds) Two-Phase Flow Heat Exchangers. NATO ASI Series, vol 143. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2790-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2790-2_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7755-2

  • Online ISBN: 978-94-009-2790-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics