Skip to main content
Log in

Evaluation of dynamic behavior of a falling porous magnesium particle over the ignition and combustion processes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this research study, combustion of micron-sized porous magnesium particle which freely falls into an infinite hot oxidizer medium is investigated. To examine the particle behavior during the process, acceleration and all forces acting on it including mass, buoyancy and drag forces are considered. The effects of produced magnesium oxide and both types of porosity consisting of surface and volume porosities are applied in mathematical modeling. The governing equations including magnesium particle mass continuity, linear momentum balance and energy conservation are numerically solved. Afterward, the impacts of important parameters on combustion characteristics are studied. Results show that by considering both types of surface and volume porosities, combustion time decreases compared to the cases in which one of these parameters is employed. With increasing the particle diameter and its porosity factor, velocity and acceleration enhance. Moreover, during the combustion process, mass and drag forces of magnesium oxide and its radius variations have the most effective contributions in total acceleration with the shares of 39.8%, 30.07% and 12.8%, respectively. Also, contribution of magnesium oxide in total acceleration is 4.8 times greater than that of magnesium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

\(A_{\text{eff}}\) :

Effective surface area (m2)

a :

Particle acceleration (m s−2)

Bi:

Biot number

\(C_{\text{ox}}\) :

Weight fraction of oxygen in air

\(C_{\text{P}}\) :

Specific heat of particle (J K−1 kg−1)

\(E_{\text{a}}\) :

Activation energy (J kg−1)

\(F_{\text{B}}\) :

Buoyant force (kg m s−2)

\(F_{\text{D}}\) :

Drag force (kg m s−2)

\(\overline{h}_{\text{conv}}\) :

Average of convective heat transfer coefficient (W m−2 K−1)

k :

Thermal conductivity (W m−1 K−1)

K :

Permeability (m2)

m :

Mass (kg)

Mw:

Molecular weight (kg mol−1)

Nu:

Nusselt number

Pe:

Peclet number

Pr:

Prandtl number

\(Q_{\text{Comb}}\) :

Specific heat of magnesium combustion (J kg−1)

r :

Radius (m)

R :

Pore radius (m)

\(r_{{{\text{Mg}},0}}\) :

Magnesium initial radius (m)

Re:

Reynolds number

\(R_{\text{Mg}}\) :

Gas constant for magnesium (J K−1 kg−1)

\(r_{\text{P}}\) :

Particle radius (m)

t :

Time (s)

T :

Temperature (K)

T :

Initial temperature (K)

\(T_{\text{surr}}\) :

Temperature of surrounding (K)

\(T_{\infty }\) :

Temperature of oxidizer medium (K)

V :

Volume (m3)

v :

Velocity (m s−1)

W :

Mass force (kg m s−2)

x :

Location (m)

ε :

Emissivity

\(\upvarepsilon_{\iota }\) :

Defined in Eq. 20

μ :

Dynamic viscosity (m kg−1 s−1)

ρ :

Density (kg m−3)

σ :

Stefan–Boltzmann constant (W m−2 K−4)

τ :

Magnesium burning time (ms)

φ :

Porosity factor

ω :

Reaction rate (kg s−1 m−2)

in:

Input

out:

Output

Mg:

Magnesium

MgO:

Magnesium oxide

com:

Combustion

sys:

System

\(\infty\) :

Oxidizer medium

References

  1. Guo Y, Zhang W, Zhou X, Bao T. Magnesium boride sintered as high-energy fuel. J Therm Anal Calorim. 2013;113(2):787–91.

    CAS  Google Scholar 

  2. Lăzăroaie C, Eşanu S, Său C, Petre R, Iordache P-Z, Staikos G, et al. Temperature measurements of magnesium-and aluminum-based flares. J Therm Anal Calorim. 2014;115(2):1407–15.

    Google Scholar 

  3. Liu L-l, Liu P-j, He G-q. Ignition and combustion characteristics of compound of magnesium and boron. J Therm Anal Calorim. 2015;121(3):1205–12.

    CAS  Google Scholar 

  4. Moser G, Tschamber V, Schönnenbeck C, Brillard A, Brilhac J-F. Non-isothermal oxidation and kinetic analysis of pure magnesium powder. J Therm Anal Calorim. 2019;136(5):2145–55.

    CAS  Google Scholar 

  5. Brown A, Zaky S, Ray H Jr, Sfeir C. Porous magnesium/PLGA composite scaffolds for enhanced bone regeneration following tooth extraction. Acta Biomater. 2015;11:543–53.

    CAS  PubMed  Google Scholar 

  6. Čapek J, Vojtěch D. Properties of porous magnesium prepared by powder metallurgy. Mater Sci Eng C. 2013;33(1):564–9.

    Google Scholar 

  7. Jiang G, He G. A new approach to the fabrication of porous magnesium with well-controlled 3D pore structure for orthopedic applications. Mater Sci Eng C. 2014;43:317–20.

    CAS  Google Scholar 

  8. Tan L, Gong M, Zheng F, Zhang B, Yang K. Study on compression behavior of porous magnesium used as bone tissue engineering scaffolds. Biomed Mater. 2009;4(1):015016.

    PubMed  Google Scholar 

  9. Dreizin EL, Hoffmann VK. Constant pressure combustion of aerosol of coarse magnesium particles in microgravity. Combust Flame. 1999;118(1–2):262–80.

    CAS  Google Scholar 

  10. Dreizin EL, Berman CH, Vicenzi EP. Condensed-phase modifications in magnesium particle combustion in air. Combust Flame. 2000;122(1–2):30–42.

    CAS  Google Scholar 

  11. King MK. A simplified two-reaction zone model of magnesium combustion in carbon dioxide. Proc Combust Inst. 2002;29(2):2931–8.

    CAS  Google Scholar 

  12. Abbud-Madrid A, Modak A, Branch MC, Daily JW. Combustion of magnesium with carbon dioxide and carbon monoxide at low gravity. J Propul Power. 2001;17(4):852–9.

    CAS  Google Scholar 

  13. Miller T, Garza A, editors. Finite rate calculations of magnesium combustion in vitiated oxygen and steam atmospheres. 4th International energy conversion engineering conference and exhibit (IECEC); 2006.

  14. Zenin A, Kuznetsov G, Kolesnikov V. Burning of magnesium particles under zero-gravity and convective blow conditions. Russ J Phys Chem B. 2008;2(4):579–88.

    Google Scholar 

  15. Diwan M, Hanna D, Shafirovich E, Varma A. Combustion wave propagation in magnesium/water mixtures: experiments and model. Chem Eng Sci. 2010;65(1):80–7.

    CAS  Google Scholar 

  16. Zhang SM, Hu CB, Xia SY, Li L, Wei XG, editors. Ignition and combustion of magnesium particles in carbon dioxide. Applied mechanics and materials. Trans Tech Publication; 2012.

  17. Huang X, Xia Z, Huang L, Hu J. Experimental study on the ignition and combustion characteristics of a magnesium particle in water vapor. Sci China Technol Sci. 2012;55(9):2601–8.

    CAS  Google Scholar 

  18. Bidabadi M, Yosefi SH, Poorfar AK, Hajilou M, Zadsirjan S. Modelling of combustion of a magnesium dust cloud in heterogeneous media. Combust Explos Shock Waves. 2014;50(6):658–63.

    Google Scholar 

  19. Li-Ya H, Zhi-Xun X, Wei-Hua Z, Xu H, Jian-Xin H. Combustion of a single magnesium particle in water vapor. Chin Phys B. 2015;24(9):094702.

    Google Scholar 

  20. Maghsoudi P, Bidabadi M. Modeling of combustion of moving porous magnesium particle considering variable particle size. Int J Numer Methods Heat Fluid Flow. 2019. https://doi.org/10.1108/HFF-02-2019-0163.

    Article  Google Scholar 

  21. Feng Y-C, Xia Z-X, Huang L-Y, Ma L-K, Yang D-L. Experimental investigation on the ignition and combustion characteristics of a single magnesium particle in air. Combust Explos Shock Waves. 2019;55(2):210–9.

    Google Scholar 

  22. Zharovsky E, Moosaie A, Le Duc A, Manhart M, Simeon B. On the numerical solution of a convection–diffusion equation for particle orientation dynamics on geodesic grids. Appl Numer Math. 2012;62(10):1554–66.

    Google Scholar 

  23. Shirmohammadi R, Moosaie A. Non-Fourier heat conduction in a hollow sphere with periodic surface heat flux. Int Commun Heat Mass Transf. 2009;36(8):827–33.

    Google Scholar 

  24. Moosaie A, Shekouhi N, Nouri N, Manhart M. An algebraic closure model for the DNS of turbulent drag reduction by Brownian microfiber additives in a channel flow. J Nonnewton Fluid Mech. 2015;226:60–6.

    CAS  Google Scholar 

  25. Maghsoudi P, Shahriari G, Rasam H, Sadeghi S. Flow and natural convection heat transfer characteristics of non-Newtonian nanofluid flow bounded by two infinite vertical flat plates in presence of magnetic field and thermal radiation using Galerkin method. J Cent South Univ. 2019;26(5):1294–305.

    CAS  Google Scholar 

  26. Izadi A, Siavashi M, Xiong Q. Impingement jet hydrogen, air and CuH2O nanofluid cooling of a hot surface covered by porous media with non-uniform input jet velocity. Int J Hydrog Energy. 2019;44(30):15933–48.

    CAS  Google Scholar 

  27. Xiong Q, Kong S-C. High-resolution particle-scale simulation of biomass pyrolysis. ACS Sustain Chem Eng. 2016;4(10):5456–61.

    CAS  Google Scholar 

  28. Bozorg MV, Doranehgard MH, Hong K, Xiong Q. CFD study of heat transfer and fluid flow in a parabolic trough solar receiver with internal annular porous structure and synthetic oil–Al2O3 nanofluid. Renew Energy. 2020;145:2598–614.

    CAS  Google Scholar 

  29. Maghsoudi P, Shahriari G, Mirzaei M, Mirzaei M. Natural convection of third-grade non-Newtonian fluid flow in a porous medium with heat source: analytical solution. Eur Phys J Plus. 2018;133(12):502.

    Google Scholar 

  30. Siavashi M, Karimi K, Xiong Q, Doranehgard MH. Numerical analysis of mixed convection of two-phase non-Newtonian nanofluid flow inside a partially porous square enclosure with a rotating cylinder. J Therm Anal Calorim. 2019;137(1):267–87.

    CAS  Google Scholar 

  31. Siavashi M, Rasam H, Izadi A. Similarity solution of air and nanofluid impingement cooling of a cylindrical porous heat sink. J Therm Anal Calorim. 2019;135(2):1399–415.

    CAS  Google Scholar 

  32. Maghsoudi P, Siavashi M. Application of nanofluid and optimization of pore size arrangement of heterogeneous porous media to enhance mixed convection inside a two-sided lid-driven cavity. J Therm Anal Calorim. 2019;135(2):947–61.

    CAS  Google Scholar 

  33. Kassebaum J, Chelliah H. Oxidation of isolated porous carbon particles: comprehensive numerical model. Combust Theor Model. 2009;13(1):143–66.

    CAS  Google Scholar 

  34. Moghadasi H, Malekian N, Poorfar AK, Bidabadi M. Thermal radiative study of counterflow combustion of porous particles. Chem Eng Process Process Intensif. 2018;134:163–73.

    CAS  Google Scholar 

  35. Rasam H, Nematollahi M, Sadeghi S, Bidabadi M. An asymptotic assessment of non-premixed flames fed with porous biomass particles in counter-flow configuration considering the effects of thermal radiation and thermophoresis. Fuel. 2019;239:747–63.

    CAS  Google Scholar 

  36. Nematollahi M, Rasam H, Sadeghi S, Bidabadi M. Asymptotic prediction of multi-region planar non-premixed combustion of moisty porous coal particles in counter-flow design considering pyrolysis, homogeneous and heterogeneous reactions. Combust Flame. 2019;207:281–94.

    CAS  Google Scholar 

  37. Abbud-Madrid A, Stroud C, Omaly P, Branch M, editors. Combustion of bulk magnesium in carbon dioxide under reduced-gravity conditions. 37th Aerospace sciences meeting and exhibit; 1999.

  38. Xie Z-K, Tane M, Hyun S-K, Okuda Y, Nakajima H. Vibration–damping capacity of lotus-type porous magnesium. Mater Sci Eng A. 2006;417(1–2):129–33.

    Google Scholar 

  39. Fedorov A. Numerical and analytical study of magnesium particle ignition. Combust Explos Shock Waves. 1996;32(1):64–72.

    Google Scholar 

  40. Zhu M, Chen X, Zhou C-S, editors. Numerical investigations on the combustion characteristics of single magnesium particle in the forced-convective flow. 23rd AIAA computational fluid dynamics conference; 2017.

  41. Liu P. A new method for calculating the specific surface area of porous metal foams. Philos Mag Lett. 2010;90(6):447–53.

    CAS  Google Scholar 

  42. Avdeev K, Frolov F, Borisov A, Frolov S. A modified model of the ignition of a magnesium particle. Russ J Phys Chem B. 2008;2(3):456–62.

    Google Scholar 

  43. Kaviany M. Principles of heat transfer in porous media. Berlin: Springer; 2012.

    Google Scholar 

  44. Helte A. Radiative and conductive heat transfer in porous media: estimation of the effective thermal conductivity. J Appl Phys. 1993;73(11):7167–73.

    CAS  Google Scholar 

  45. Shampine LF, Reichelt MW. The matlab ode suite. SIAM J Sci Comput. 1997;18(1):1–22.

    Google Scholar 

  46. Bergman TL, Incropera FP, Lavine AS, DeWitt DP. Introduction to heat transfer. Hoboken: Wiley; 2011.

    Google Scholar 

  47. Valov A, Kustov YA, Shevtsov V. Spectroscopic study of the combustion of solitary magnesium particles in air and in carbon dioxide. Combust Explos Shock Waves. 1994;30(4):431–6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Bidabadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maghsoudi, P., Bidabadi, M. Evaluation of dynamic behavior of a falling porous magnesium particle over the ignition and combustion processes. J Therm Anal Calorim 141, 1605–1617 (2020). https://doi.org/10.1007/s10973-020-09759-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09759-9

Keywords

Navigation