Skip to main content
Log in

The influence of turbulator on heat transfer and exergy drop of nanofluid in heat exchangers

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In current investigation, tape is used to augment pressure drop and heat rate inside heat exchangers in existence of nanofluid. To do this, the three-dimensional model of the twisted tape is chosen for our investigation. This study dedicated on the heat transfer intensifications when significant parameters such as pitching ratio, height ratio and inlet velocity are changed. In order to simulate this model, computational fluid dynamic method with the simple algorithm is applied with kε (RNG) model for the modeling of the non-laminar flow through the tube due to the presence of the turbulator. Obtained results show a reasonable agreement with experimental data. Our results show that the efficiency of the H2O-CuO nanofluid considerably increases as the Reynolds number augmented in the tube. Moreover, the rate of exergy declines (more than 35%) as the height ratio increased from 0.3 to 0.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Manh TD, Bahramkhoo M, Gerdroodbary MB, Nam ND, Tlili I. Investigation of nanomaterial flow through non-parallel plates. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09352-0.

    Article  Google Scholar 

  2. Wang P, Li JB, Bai FW, Liu DY, Xu C, Zhao L, Wang ZF. Experimental and theoretical evaluation on the thermal performance of a windowed volumetric solar receiver. Energy. 2017;119(15):652–61.

    Article  CAS  Google Scholar 

  3. Qin Y, Zhang M, Hiller JE. Theoretical and experimental studies on the daily accumulative heat gain from cool roofs. Energy. 2017;129:138–47.

    Article  Google Scholar 

  4. Sheikholeslami M, Gerdroodbary M, Shafee A, Tlili I. Hybrid nanoparticles dispersion into water inside a porous wavy tank involving magnetic force. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08858-6.

    Article  Google Scholar 

  5. Mihaiu S, Szilágyi IM, Atkinson I, Mocioiu OC, Hunyadi D, Pandele-Cusu J, Toader A, Munteanu C, Boyadjiev S, Madarász J, Pokol G, Zaharescu M. Thermal study on the synthesis of the doped ZnO to be used in TCO films. J Therm Anal Calorim. 2016;124(1):71–80.

    Article  CAS  Google Scholar 

  6. Manh TD, Nam ND, Abdulrahman GK, Moradi R, Babazadeh H. The influence of Hybrid nanoparticles transportation on natural convection inside porous domain. Int J Mod Phys C. 2020;31(02):2050026.

    Article  CAS  Google Scholar 

  7. Cao L, Chaoyu T, Pengfei H, Liu S. Influence of solid particle erosion (SPE) on safety and economy of steam turbines. Appl Therm Eng. 2019;150(5):552–63.

    Article  Google Scholar 

  8. Gao W, Wang WF. The eccentric connectivity polynomial of two classes of nanotubes. Chaos Solitons Fractals. 2016;89:290–4.

    Article  Google Scholar 

  9. Shafee A, Firouzi A, Nam ND, Babazadeh H. Elliptic cavity filled with hybrid nanomaterial under consideration of magnetic field. Int J Mod Phys C. 2020. https://doi.org/10.1142/S0129183120500801.

    Article  Google Scholar 

  10. Qin Y, Zhang M, Mei G. A new simplified method for measuring the permeability characteristics of highly porous media. J Hydrol. 2018;562:725–32.

    Article  Google Scholar 

  11. Tang G, Shafee A, Nam ND, Tlili I. Coulomb forces impacts on nanomaterial transportation within porous tank with lid walls. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09407-2.

    Article  Google Scholar 

  12. Qin Y, Zhao Y, Chen X, Wang L, Li F, Bao T. Moist curing increases the solar reflectance of concrete. Constr Build Mater. 2019;215:114–8.

    Article  Google Scholar 

  13. Sheikholeslami M, Jafaryar M, Shafee A, Babazadeh H. Acceleration of discharge process of clean energy storage unit with insertion of porous foam considering nanoparticle enhanced paraffin. J Clean Prod. 2020;261:121206. https://doi.org/10.1016/j.jclepro.2020.121206.

    Article  CAS  Google Scholar 

  14. Gao W, Yan L, Shi L. Generalized Zagreb index of polyomino chains and nanotubes. Optoelectron Adv Mater Rapid Commun. 2017;11(1–2):119–24.

    Google Scholar 

  15. Zhang Y, Zhang X, Li M, Liu Z. Research on heat transfer enhancement and flow characteristic of heat exchange surface in cosine style runner. Heat Mass Transf. 2019;55:3117–31.

    Article  Google Scholar 

  16. Babazadeh H, Ambreen T, Shehzad SA, Shafee A. Ferrofluid non-Darcy heat transfer involving second law analysis; An application of CVFEM. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09264-z.

    Article  Google Scholar 

  17. Qin Y, He Y, Hiller JE, Mei G. A new water-retaining paver block for reducing runoff and cooling pavement. J Clean Prod. 2018;199:948–56.

    Article  Google Scholar 

  18. Fu G, Guo J, Yao X, Summers PA, Widijatmoko SD, Hall P. An investigation of the current status of recycling spent lithium-ion batteries from consumer electronics in China. J Clean Prod. 2017;161(10):765–80.

    Google Scholar 

  19. Qin Y, Hiller JE. Understanding pavement-surface energy balance and its implications on cool pavement development. Energy Build. 2014;85:389–99.

    Article  Google Scholar 

  20. Szilágyi IM, Kállay-Menyhárd A, Šulcová P, Kristóf J, Pielichowski K, Šimon P. Recent advances in thermal analysis and calorimetry presented at the 1st Journal of Thermal Analysis and Calorimetry Conference and 6th V4 (Joint Czech-Hungarian-Polish-Slovakian) Thermoanalytical Conference (2017). J Therm Anal Calorim. 2018;133:1–4.

    Article  Google Scholar 

  21. Gao W, Wang WF. The vertex version of weighted wiener number for bicyclic molecular structures, Computational and Mathematical Methods in Medicine, 2015, 10, Article ID 418106. http://dx.doi.org/10.1155/2015/418106.

  22. Manh TD, Salehi F, Shafee A, Nam ND, Shakeriaski F, Babazadeh H, Vakkar A, Tlili I. Role of magnetic force on the transportation of nano powders including radiation. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-09182-9.

    Article  Google Scholar 

  23. Szilágyi IM, Santala E, Heikkilä M, Kemell M, Nikitin T, Khriachtchev L, Räsänen M, Ritala M, Leskelä M. Thermal study on electrospun polyvinylpyrrolidone/ammonium metatungstate nanofibers: optimising the annealing conditions for obtaining WO3 nanofibers. J Therm Anal Calorim. 2011;105(1):73.

    Article  Google Scholar 

  24. Ji Q, Guo J-F. Oil price volatility and oil-related events: an Internet concern study perspective. Appl Energy. 2015;137(1):256–64.

    Article  Google Scholar 

  25. Lublóy É, Kopecskó K, Balázs GL, Szilágyi IM, Madarász J. Improved fire resistance by using slag cements. J Therm Anal Calorim. 2016;125(1):271–9.

    Article  Google Scholar 

  26. Seyednezhad M, Sheikholeslami M, Ali JA, Shafee A, Nguyen TK. Nanoparticles for water desalination in solar heat exchanger Review. J Therm Anal Calorim. 2020;139:1619–36. https://doi.org/10.1007/s10973-019-08634-6.

    Article  CAS  Google Scholar 

  27. Gao W, Farahani MR, Shi L. The forgotten topological index of some drug structures. Acta Medica Mediterranea. 2016;32:579–85.

    Google Scholar 

  28. Qin Y. Urban canyon albedo and its implication on the use of reflective cool pavements. Energy Build. 2015;96:86–94.

    Article  Google Scholar 

  29. Wang G, Wang F, Shen F, Jiang T, Chen Z, Peng H. Experimental and optical performances of a solar CPV device using a linear Fresnel reflector concentrator. Renew Energy. 2020;146:2351–61.

    Article  Google Scholar 

  30. Qin Y. A review on the development of cool pavements to mitigate urban heat island effect. Renew Sustain Energy Rev. 2015;52:445–59.

    Article  Google Scholar 

  31. Babazadeh H, Shah Z, Ullah I, Kumam P, Shafee A. Analyze of hybrid nanofluid behavior within a porous cavity including Lorentz forces and radiation impacts. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09416-1.

    Article  Google Scholar 

  32. Qin Y, Luo J, Chen Z, Mei G, Yan L-E. Measuring the albedo of limited-extent targets without the aid of known-albedo masks. Sol Energy. 2018;171:971–6.

    Article  Google Scholar 

  33. Manh TD, Nam ND, Abdulrahman GK, Moradi R, Babazadeh H. Impact of MHD on hybrid nanomaterial free convective flow within a permeable region. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-09008-8.

    Article  Google Scholar 

  34. Qin Y, Hiller JE, Meng D. Linearity between pavement thermophysical properties and surface temperatures. J Mater Civil Eng. 2019. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002890.

    Article  Google Scholar 

  35. Hajizadeh MR, Selimefendigil F, Muhammad T, Ramzan M, Babazadeh H, Li Z. Solidification of PCM with nano powders inside a heat exchanger. J Mol Liquids. 2020;306:112892.

    Article  CAS  Google Scholar 

  36. Sheikholeslami M. New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. Comput Methods Appl Mech Eng. 2019;344:319–33.

    Article  Google Scholar 

  37. Mofrad AM, Schellenberg Parker S, Peixoto C, Hunt Heather K, Hammond Karl D. Calculated infrared and Raman signatures of Ag+, Cd2+, Pb2+, Hg2+, Ca2+, Mg2+, and K+ sodalites. Microporous Mesoporous Mater. 2020;296:109983.

    Article  CAS  Google Scholar 

  38. Qin Y, He H, Ou X, Bao T. Experimental study on darkening water-rich mud tailings for accelerating desiccation. J Clean Prod. 2019. https://doi.org/10.1016/j.jclepro.2019.118235.

    Article  Google Scholar 

  39. Iasir ARM, Lombardi T, Lu Q, Mofrad AM, Vaninger M, Zhang X, Singh DJ. Electronic and magnetic properties of perovskite selenite and tellurite compounds: CoSeO 3, NiSeO 3, CoTeO 3, and NiTeO 3. Phys Rev. 2020;101(4):045107.

    Article  CAS  Google Scholar 

  40. Sheikholeslami M, Gerdroodbary MB, Moradi R, Shafee A, Li Z. Application of Neural Network for estimation of heat transfer treatment of Al2O3-H2O nanofluid through a channel. Comput Methods Appl Mech Eng. 2019;344(2019):1–12.

    Article  Google Scholar 

  41. Dinh MT, Tlili I, Dara RN, Shafee A, Al-Jahmany YYY, Nguyen-Thoi T. Nanomaterial treatment due to imposing MHD flow considering melting surface heat transfer. Physica A Physica A. 2020;540:123036.

    Article  Google Scholar 

  42. Sheikholeslami M, Jafaryar M, Shafee A, Li Z. Nanofluid heat transfer and entropy generation through a heat exchanger considering a new turbulator and CuO nanoparticles. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-018-7866-7.

    Article  Google Scholar 

  43. Shafee A, Sheikholeslami M, Jafaryar M, Babazadeh H. Irreversibility of hybrid nanoparticles within a pipe fitted with turbulator. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-019-09248-8.

    Article  Google Scholar 

  44. Shafee A, Jafaryar M, Abohamzeh E, Nam ND, Tlili I. Simulation of thermal behavior of hybrid nanomaterial in a tube improved with turbulator. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-019-09247-9.

    Article  Google Scholar 

  45. Kim D, Kwon Y, Cho Y, Li C, Cheong S, Hwang Y, Lee J, Hong D, Moona S. Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions. Curr Appl Phys. 2009;9:e119–23.

    Article  Google Scholar 

  46. Mofrad AM, Peixoto C, Blumeyer J, Liu J, Hunt HK, Hammond KD. Vibrational spectroscopy of sodalite: theory and experiments. J Phys Chem C. 2018;122(43):24765–79.

    Article  CAS  Google Scholar 

  47. Manh TD, Nam ND, Abdulrahman GK, Khan MH, Tlili I, Shafee A, Shamlooei M, Nguyen-Thoi T. Investigation of hybrid nanofluid migration within a porous closed domain. Phys A Stat Mech Appl. 2020. https://doi.org/10.1016/j.physa.2019.123960.

    Article  Google Scholar 

  48. Dongmin Yu, Zhu H, Han W, Holburn D. Dynamic multi agent-based management and load frequency control of PV/Fuel cell/wind turbine/CHP in autonomous microgrid system. Energy. 2019;173(15):554–68.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houman Babazadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manh, T.D., Marashi, M., Mofrad, A.M. et al. The influence of turbulator on heat transfer and exergy drop of nanofluid in heat exchangers. J Therm Anal Calorim 145, 201–209 (2021). https://doi.org/10.1007/s10973-020-09696-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09696-7

Keywords

Navigation