Skip to main content
Log in

Two- and three-dimensional comparative study of heat transfer and pressure drop characteristics of nanofluids flow through a ventilated cubic cavity (part I: Newtonian nanofluids)

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Through this paper, three-dimensional fluid flow and heat transfer of Al2O3 nanofluid within ventilated enclosures was taken into consideration. Crossed by the nanofluid, the ventilation system is assured by two equivalent openings located at the vertical walls. So, the cold nanofluid gets enter using the opening located at the top of the left side and leaving by the second one, which is located at the bottom of the right side. Except the adiabatic rear and front sides, all parts of the cubic space are maintained at a constant temperature, higher than that of the entrance nanofluid. To make clear the impact of main parameters such as Reynolds number, the Richardson number and nanoparticles volume fraction as well as the 2D extension, the convection phenomenon was reported by means of streamlines and isotherm plots, side by side with the velocity profiles. The main results obtained show that when the Reynolds number increases, the heat exchange rate is an increasing function and the pressure drop is a decreasing function. In addition, in a conductive dominant regime for low Reynolds numbers, the two-dimensional (2D) is valid and can predict the studied phenomena in three-dimensional (3D). Finally, a correlation for the pressure drop is obtained in polynomial form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

C p :

Constant pressure specific heat (\({\text{J}}\;{\text{kg}}^{- 1} \;{\text{K}}^{- 1}\))

g :

Gravitational acceleration (m s−2)

H :

Height of cavity (m)

k :

Thermal conductivity (W m−1 K−1)

L :

Length of the cavity (m)

Nu:

Nusselt number

p :

Pressure, (\({\text{N}}\,{\text{m}}^{- 2}\))

P :

Dimensionless pressure

Pr:

Prandtl number

Re:

Reynolds number

Ri:

Richardson number, \({\text{Ri}} = {{g\beta_{\text{bf}} \left({T_{\text{wall}} - T_{\text{inlet}}} \right)H} \mathord{\left/{\vphantom {{g\beta_{\text{bf}} \left({T_{\text{wall}} - T_{\text{inlet}}} \right)H} {u_{\text{inlet}}^{2}}}} \right. \kern-0pt} {u_{\text{inlet}}^{2}}}\)

s :

Coordinate adopted for distance along the walls (m)

S :

Dimensionless coordinate adopted for distance along walls, \(S\, = \,s/H\,\)

T :

Temperature (K)

x, z and y :

Cartesian coordinates (m)

X, Z and Y :

Dimensionless Cartesian coordinates

u, w and v :

Velocity components in the X-direction, Z-direction and Y-direction (\({\text{m}}\;{\text{s}}^{- 1}\))

U, V and W :

Dimensionless velocity components

α :

Thermal diffusivity (\({\text{m}}\;{\text{s}}^{- 1}\))

β :

Thermal expansion coefficient (\({\text{K}}^{- 1}\))

ρ :

Fluid density (kg m−3)

ν :

Kinematic fluid viscosity (m2 s−1)

µ :

Fluid dynamic viscosity (kg m−1 s−1)

θ :

Dimensionless temperature

φ :

Particle volume fraction

Avg:

Average

bf:

Base fluid

nf:

Nanofluid

lr:

Layer

s:

Solid particle

0:

Reference

2D:

Two-dimensional

3D:

Three-dimensional

References

  1. Choi SUS. Enhancing thermal conductivity of fluid with nanoparticles. Dev Appl Non-Newton Flows. 1995;66:99–105.

    Google Scholar 

  2. Daungthongsuk W, Wongwises S. A critical review of convective heat transfer of nanofluids. Renew Sustain Energy Rev. 2007;11(5):797–817.

    Article  CAS  Google Scholar 

  3. Afshari A, Akbari M, Toghraie D, Yazdi ME. Experimental investigation of rheological behavior of the hybrid nanofluid of MWCNT–alumina/water (80%)–ethylene-glycol (20%). J Therm Anal Calorim. 2018;132:1001–15. https://doi.org/10.1007/s10973-018-7009-1.

    Article  CAS  Google Scholar 

  4. Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transfer. 1988;11(2):151–70.

    Article  Google Scholar 

  5. Ouyahia S-E, Benkahla YK, Berabou W, Boudiaf A. Numerical study of the flow in a square cavity filled with Carbopol-TiO2 nanofluid. Powder Technol. 2017;311:101–11.

    Article  CAS  Google Scholar 

  6. Hamed KA. Experimentally and numerical investigation of thermophysical properties, heat transfer and pressure drop of covalent and noncovalent functionalized grapheme nanoplatelet-based nanofluids in an annular heat exchanger. Int Commun Heat Mass Transf. 2015;68:267–75.

    Article  Google Scholar 

  7. Ebrahimnia-Bajestan E, Niazmand H, Duangthongsuk W, Wongwises S. Numerical investigation of effective parameters in convective heat transfer of nanofluids flowing under a laminar flow regime. Int J Heat Mass Transf. 2011;54:4376–88.

    Article  CAS  Google Scholar 

  8. Esfe MH, Saedodin S, Malekshah EH, Babaie A, Rostamian H. Mixed convection inside lid-driven cavities filled with nanofluids. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7519-x.

    Article  Google Scholar 

  9. Saeidi SM, Khodadadi JM. Forced convection in a square cavity with inlet and outlet ports. Int J Heat Mass Transf. 2006;49:1896–906.

    Article  CAS  Google Scholar 

  10. Souritiji E, Gorji-Bandpy M, Ganji DD, Hosseinizadeh SF. Numerical analysis of mixed convection heat transfer of Al2O3-water nanofluid in a ventilated cavity considering different positions of the outlet port. Powder Technol. 2014;262:71–81.

    Article  Google Scholar 

  11. Benzema M, Benkahla YK, Labsi N, Ouyahia S-E, El Ganaoui M. Second law analysis of MHD mixed convection heat transfer in a vented irregular cavity filled with Ag–MgO/water hybrid nanofluid. J Therm Anal Calorim. 2019;137:1113–32.

    Article  CAS  Google Scholar 

  12. Benzema M, Benkahla YK, Boudiaf A, Ouyahia S-E, El Ganaoui M. Magnetic field impact on nanofluid convective flow in a vented trapezoidal cavity using Buongiorno’s mathematical model. Eur Phys J Appl Phys. 2019;88:11101. https://doi.org/10.1051/epjap/2019190239.

    Article  CAS  Google Scholar 

  13. Mahmoudi AH, Shahi M, Talebi F. Effect of inlet and outlet location on the mixed convective cooling inside the ventilated cavity subjected to an external nanofluid. Int Commun Heat Mass Transf. 2010;37:1158–73.

    Article  CAS  Google Scholar 

  14. Abdelrazek AH, Kazi SN, Alawi OA, Yusoff N, Oon CS, Ali HM. Heat transfer and pressure drop investigation through pipe with different shapes using different types of nanofluids. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08562-5.

    Article  Google Scholar 

  15. Lo DC, Young DL, Murugesan K. GDQ method for natural convection in a cubic cavity using velocity-vorticity formulation. Numer Heat Transf Part B. 2005;48:363–86.

    Article  CAS  Google Scholar 

  16. Fusegi T, Hyun JM, Kuwahara K, Farouk B. A numerical study of three-dimensional natural convection in a differentially heated cubical enclosure. Int J Heat Mass Transf. 1991;34:1543–57.

    Article  Google Scholar 

  17. Mohamad AA, Bennacer R. Double diffusion natural convection in an enclosure filled with saturated porous medium subjected to cross gradients; stably stratified fluid. Int J Heat Mass Transf. 2002;45:3725–40.

    Article  CAS  Google Scholar 

  18. Khadiri A, Bennacer R, Hasnaoui M, Amahmid A. A two- and three-dimensional multiple steady states in a porous cavity heated and salted from below. Int J Heat Mass Transf. 2011;50:918–29.

    Google Scholar 

  19. Hadidi A, Bennacer R. Three-dimensional double diffusive natural convection across a cubical enclosure partially filled by vertical porous layer. Int J Therm Sci. 2016;101:143–57.

    Article  Google Scholar 

  20. Boutra A, Ragui K, Bennacer R, Benkahla YK. Natural convection heat transfer of a nanofluid into a cubical enclosure: lattice Boltzmann investigation. Arab J Sci Eng. 2016;41:1969–80.

    Article  CAS  Google Scholar 

  21. Purusothaman A, Murugesan K, Chamkha AJ. 3D modeling of natural convective heat transfer from a varying rectangular heat generating source. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08259-9.

    Article  Google Scholar 

  22. Al-Rashed AAAA, Kalidasan K, Kolsi L, Aydi A, Malekshah EH, Hussein AK, Rajesh Kanna PR. Three-dimensional investigation of the effects of external magnetic field inclination on laminar natural convection heat transfer in CNT–water nanofluid filled cavity. J Mol Liq. 2018;252:454–68.

    Article  CAS  Google Scholar 

  23. Al-Rashed AAAA, Kalidasanb K, Kolsi L, Velkennedy R, Aydi RA, Hussein AK, Malekshah EH. Mixed convection and entropy generation in a nanofluid filled cubical open cavity with a central isothermal block. Int J Mech Sci. 2017. https://doi.org/10.1016/j.ijmecsci.2017.11.033.

    Article  Google Scholar 

  24. Kolsi L, Alrashed AAAA, Al-Salemd K, Oztop HF, Borjini MN. Control of natural convection via inclined plate of CNT-water nanofluid in an open sided cubical enclosure under magnetic field. Int J Heat Mass Transf. 2017;111:1007–18.

    Article  CAS  Google Scholar 

  25. Zhang J-K, Li B-W, Dong H, Luo X-H, Lin H. Analysis of magnetohydrodynamics (MHD) natural convection in 2D cavity and 3D cavity with thermal radiation effects. Int J Heat Mass Transf. 2017;112:216–23.

    Article  Google Scholar 

  26. Selimefendigil F, Öztop HF. Effects of an inner stationary cylinder having an elastic rod-like extension on the mixed convection of CNT-water nanofluid in a three dimensional vented cavity. Int J Heat Mass Transf. 2019;137:650–68.

    Article  CAS  Google Scholar 

  27. Kherroubi S, Ragui K, Bensaci A, Labsi N, Boutra A, Benkahla YK. Effect of the second outlet location and the applied magnetic field within a ventilated cubic cavity crossed by a nanofluid on mixed convection mode: best configurations. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08638-2.

    Article  Google Scholar 

  28. Boutra A, Ragui K, Labsi N, Benkahla YK. Free convection enhancement within a nanofluid’ filled enclosure with square heaters. Int J Heat Technol. 2017;35(3):447–58. https://doi.org/10.18280/ijht.350302.

    Article  Google Scholar 

  29. Boudiaf A, Danane F, Benkahla YK, Berabou W, Benzema M, Labsi N, Ouyahia S-E. Numerical study of viscous dissipation and non-Boussinesq model effects on CMC–TiO2 fluid flow over backward facing step with baffle. J Therm Anal Calorim. 2019;135:787–99. https://doi.org/10.1007/s10973-018-7479-1.

    Article  CAS  Google Scholar 

  30. Nguyen CT, Desgranges F, Roy G, Galanis GN, Mare T, Boucher S, Angue MH. Temperature and particle-size dependent viscosity data for water-based nanofluids—hysteresis phenomenon. Int J Heat Fluid Flow. 2007;28:1492–506.

    Article  CAS  Google Scholar 

  31. Sourtiji E, Hosseinizadeh SF, Gorji-Bandpy M, Ganji DD. Effect of water-based Al2O3 nanofluids on heat transfer and pressure drop in periodic mixed convection inside a square ventilated cavity. Int Commun Heat Mass. 2011;38:1125–34.

    Article  CAS  Google Scholar 

  32. Murshed SMS, Leong KC, Yang C. Thermophysical and electrokinetic properties of nanofluids—a critical review. Appl Therm Eng. 2018;28:2109–25.

    Article  Google Scholar 

  33. Leong K, Yang C, Murshed S. A model for the thermal conductivity of nanofluids—the effect of interfacial layer. J Nanopart Res. 2006;8(2):245–54.

    Article  CAS  Google Scholar 

  34. Bhattacharya P, Samanta AN, Chakraborty S. Numerical study of conjugate heat transfer in rectangular microchannel heat sink with Al2O3/H2O nanofluid. Heat Mass Transf. 2009;45:1323–33.

    Article  CAS  Google Scholar 

  35. Pordanjani AH, Jahanbakhshi A, Nadooshan AA, Afrand M. Effect of two isothermal obstacles on the natural convection of nanofluid in the presence of magnetic field inside an enclosure with sinusoidal wall temperature distribution. Int J Heat Mass Transf. 2018;121:565–78.

    Article  CAS  Google Scholar 

  36. Hu Y, He Y, Qi C, Jiang B, Schlaberg HI. Experimental and numerical study of natural convection in a square enclosure filled with nanofluid. Int J Heat Mass Transf. 2014;78:380–92.

    Article  CAS  Google Scholar 

  37. Gupta N, Nayak AK, Malik S. Conjugate heat and species transport in an air filled ventilated enclosure with a thermo-contaminated block. Int J Heat Mass Transf. 2018;117:388–411.

    Article  Google Scholar 

  38. Patankar S. Numerical heat transfer and fluid flow. Tokyo: CRC Press; 1980.

    Google Scholar 

  39. Krane RJ, Jessee J. Some detailed field measurements for a natural convection flow in a vertical square enclosure. In: Proceedings of the First ASME-JSME Ther. Eng. Joint Conf. 1983; 01:323–329.

  40. Khanafer K, Vafai K, Lightstone M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J Heat Mass Transf. 2003;46:3639–53.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seddik Kherroubi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kherroubi, S., Benkahla, Y.K., Labsi, N. et al. Two- and three-dimensional comparative study of heat transfer and pressure drop characteristics of nanofluids flow through a ventilated cubic cavity (part I: Newtonian nanofluids). J Therm Anal Calorim 144, 623–646 (2021). https://doi.org/10.1007/s10973-020-09588-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09588-w

Keywords

Navigation