Skip to main content
Log in

Experimental investigation on dimensionless numbers and heat transfer in nanocompositefluid shell and tube heat exchanger

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the present study, the thermal performance of horizontal shell and tube heat exchanger with a new TiO2–Ag/Distilled water nanocompositefluid in comparison with conventional coolant water is experimentally investigated. Thermal conductivity of 0.2 vol% TiO2–Ag/distilled water is about 17% higher than water at 60 °C. The tube flow Reynolds number is decreased, while the Prandtl number is increased due to the increase in viscosity of the nanocompositefluid. Consequently, the Nusselt number difference between nanocompositefluid, and water is reduced and the difference decreases with the increase in the tube flow rate. For nanocompositefluid, the tube side heat transfer coefficient is 13.43%, the overall heat transfer coefficient is 12.16%, and heat transfer rate is 18.4% higher than base fluid water at a shell fluid flow rate of 6 lpm at 60 °C and tube fluid flow rate of 4 lpm at 35 °C. The enhancement in heat transfer with nanocompositefluid is higher mainly due to its enhanced thermal conductivity. The pumping power is 1.95 times higher for nanocompositefluid for the same volume flow rate. But, for the same heat load, the required volume flow rate of nanocompositefluid and the size of heat exchanger are reduced, and pumping power penalty is also reduced. Thus, the present experimental study ascertains that TiO2–Ag/distilled water nanocompositefluid has the potential to improve the thermal performance of the heat exchanger and reduce the cost of heat exchanger by reducing the size of the heat exchanger for the same heat capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

A :

Area (m2)

B :

Baffle spacing

C p :

Specific heat capacity (J kg−1 K−1)

D :

Shell diameter (m)

d :

Tube diameter (m)

F :

Correction factor

H :

Heat transfer coefficient (W m−2 K−1)

K :

Thermal conductivity (W m−1 K−1)

L :

Length of the tube (m)

m :

Mass flow rate (lpm)

N :

Number of tubes

P t :

Tube pitch

Q :

Heat transfer rate (W)

t :

Tube fluid temperature

T :

Shell fluid temperature

U o :

Overall heat transfer coefficient (W m−2 K−1)

V :

Velocity (m s−1)

ρ :

Density of the fluid (kg m−3)

μ :

Viscosity of the fluid (N s m−2)

bf:

Basefluid

csf:

Shell fluid cross-flow

i:

Inner

o:

Outer

s:

Shell side

t:

Tube side

max:

Maximum

tcf:

Tube fluid flow

b:

Bulk fluid temperature

s:

Surface temperature

Nu:

Nusselt number

Pr:

Prandtl number

Re:

Reynolds number

DW:

Distilled water

LMTD:

Logarithmic mean temperature difference

lpm:

Litre per minute

NCF:

Nanocompositefluid

TCR:

Thermal conductivity ratio

References

  1. Hajatzadeh Pordanjani A, Aghakhani S, Afrand M, Mahmoudi B, Mahian O, Wongwises S. An updated review on application of nanofluids in heat exchangers for saving energy. Energy Convers Manag. 2019. https://doi.org/10.1016/j.enconman.2019.111886.

    Article  Google Scholar 

  2. Sajid MU, Ali HM. Recent advances in application of nanofluids in heat transfer devices: a critical review. Renew Sustain Energy Rev. 2019;103:556–92. https://doi.org/10.1016/j.rser.2018.12.057.

    Article  CAS  Google Scholar 

  3. Sarafraz MM, Pourmehran O, Yang B, Arjomandi M, Ellahi R. Pool boiling heat transfer characteristics of iron oxide nano-suspension under constant magnetic field. Int J Therm Sci. 2020;147:106131. https://doi.org/10.1016/j.ijthermalsci.2019.106131.

    Article  CAS  Google Scholar 

  4. Bahiraei M, Rahmani R, Yaghoobi A, Khodabandeh E, Mashayekhi R, Amani M. Recent research contributions concerning use of nanofluids in heat exchangers: a critical review. Appl Therm Eng. 2018;133:137–59. https://doi.org/10.1016/j.applthermaleng.2018.01.041.

    Article  CAS  Google Scholar 

  5. Rashidi S, Eskandarian M, Mahian O, Poncet S. Combination of nanofluid and inserts for heat transfer enhancement. J Therm Anal Calorim. 2018;135(1):437–60. https://doi.org/10.1007/s10973-018-7070-9.

    Article  CAS  Google Scholar 

  6. Khan A, Ali HM, Nazir R, Ali R, Munir A, Ahmad B, et al. Experimental investigation of enhanced heat transfer of a car radiator using ZnO nanoparticles in H2O–ethylene glycol mixture. J Therm Anal Calorim. 2019;138(5):3007–21. https://doi.org/10.1007/s10973-019-08320-7.

    Article  CAS  Google Scholar 

  7. Khan LA, Raza M, Mir NA, Ellahi R. Effects of different shapes of nanoparticles on peristaltic flow of MHD nanofluids filled in an asymmetric channel. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08348-9.

    Article  Google Scholar 

  8. Keyvani M, Afrand M, Toghraie D, Reiszadeh M. An experimental study on the thermal conductivity of cerium oxide/ethylene glycol nanofluid: developing a new correlation. J Mol Liq. 2018;266:211–7. https://doi.org/10.1016/j.molliq.2018.06.010.

    Article  CAS  Google Scholar 

  9. Saeedi AH, Akbari M, Toghraie D. An experimental study on rheological behavior of a nanofluid containing oxide nanoparticle and proposing a new correlation. Physica E Low Dimens Syst Nanostruct. 2018;99:285–93. https://doi.org/10.1016/j.physe.2018.02.018.

    Article  CAS  Google Scholar 

  10. Albadr J, Tayal S, Alasadi M. Heat transfer through heat exchanger using Al2O3 nanofluid at different concentrations. Case Stud Therm Eng. 2013;1(1):38–44. https://doi.org/10.1016/j.csite.2013.08.004.

    Article  Google Scholar 

  11. Lotfi R, Rashidi AM, Amrollahi A. Experimental study on the heat transfer enhancement of MWNT-water nanofluid in a shell and tube heat exchanger. Int Commun Heat Mass Transf. 2012;39(1):108–11. https://doi.org/10.1016/j.icheatmasstransfer.2011.10.002.

    Article  CAS  Google Scholar 

  12. Durmuş A, Durmuş A, Esen M. Investigation of heat transfer and pressure drop in a concentric heat exchanger with snail entrance. Appl Therm Eng. 2002;22(3):321–32. https://doi.org/10.1016/S1359-4311(01)00078-3.

    Article  Google Scholar 

  13. Elias MM, Shahrul IM, Mahbubul IM, Saidur R, Rahim NA. Effect of different nanoparticle shapes on shell and tube heat exchanger using different baffle angles and operated with nanofluid. Int J Heat Mass Transf. 2014;70:289–97. https://doi.org/10.1016/j.ijheatmasstransfer.2013.11.018.

    Article  CAS  Google Scholar 

  14. Masoud Hosseini S, Vafajoo L, Salman BH. Performance of CNT-water nanofluid as coolant fluid in shell and tube intercooler of a LPG absorber tower. Int J Heat Mass Transf. 2016;102:45–53. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.071.

    Article  CAS  Google Scholar 

  15. Leong KY, Saidur R, Khairulmaini M, Michael Z, Kamyar A. Heat transfer and entropy analysis of three different types of heat exchangers operated with nanofluids. Int Commun Heat Mass Transf. 2012;39(6):838–43. https://doi.org/10.1016/j.icheatmasstransfer.2012.04.003.

    Article  CAS  Google Scholar 

  16. Falahat A. Entropy generation analysis of nanofluid flow in coiled tube heat exchanger under laminar flow. Elixir Mech Engg. 2012;51:10674–10676.

    Google Scholar 

  17. Shahrul IM, Mahbubul IM, Saidur R, Sabri MFM. Experimental investigation on Al2O3–W, SiO2–W and ZnO–W nanofluids and their application in a shell and tube heat exchanger. Int J Heat Mass Transf. 2016;97:547–58. https://doi.org/10.1016/j.ijheatmasstransfer.2016.02.016.

    Article  CAS  Google Scholar 

  18. Moradi A, Toghraie D, Isfahani AHM, Hosseinian A. An experimental study on MWCNT–water nanofluids flow and heat transfer in double-pipe heat exchanger using porous media. J Therm Anal Calorim. 2019;137(5):1797–807. https://doi.org/10.1007/s10973-019-08076-0.

    Article  CAS  Google Scholar 

  19. Shahsavar A, Talebizadeh Sardari P, Toghraie D. Free convection heat transfer and entropy generation analysis of water-Fe3O4/CNT hybrid nanofluid in a concentric annulus. Int J Numer Methods Heat Fluid Flow. 2019;29(3):915–34. https://doi.org/10.1108/hff-08-2018-0424.

    Article  Google Scholar 

  20. Aghabozorg MH, Rashidi A, Mohammadi S. Experimental investigation of heat transfer enhancement of Fe2O3-CNT/water magnetic nanofluids under laminar, transient and turbulent flow inside a horizontal shell and tube heat exchanger. Exp Therm Fluid Sci. 2016;72:182–9. https://doi.org/10.1016/j.expthermflusci.2015.11.011.

    Article  CAS  Google Scholar 

  21. Cengel YA, Ghajar AJ. Heat and mass transfer. New York: McGraw-Hill Education; 2011.

    Google Scholar 

  22. Fuskele V, Sarviya RM. Recent developments in nanoparticles synthesis, preparation and stability of nanofluids. Mater Today Proc. 2017;4(2):4049–60. https://doi.org/10.1016/j.matpr.2017.02.307.

    Article  Google Scholar 

  23. Ghajar AJ, Yunus A, Cengel D. Heat and mass transfer: fundamentals and applications. New York: McGraw-Hill Education; 2014.

    Google Scholar 

  24. Holman JP. Heat transfer. New York: McGraw-Hill Education; 1968.

    Google Scholar 

  25. Said Z, Rahman SMA, El Haj Assad M, Alami AH. Heat transfer enhancement and life cycle analysis of a shell-and-tube heat exchanger using stable CuO/water nanofluid. Sustain Energy Technol Assess. 2019;31:306–17. https://doi.org/10.1016/j.seta.2018.12.020.

    Article  Google Scholar 

  26. Shahrul IM, Mahbubul IM, Saidur R, Khaleduzzaman SS, Sabri MFM, Rahman MM. Effectiveness study of a shell and tube heat exchanger operated with nanofluids at different mass flow rates. Numer Heat Transf Part A Appl. 2014;65(7):699–713. https://doi.org/10.1080/10407782.2013.846196.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Dhinesh Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhinesh Kumar, D., Valan Arasu, A. Experimental investigation on dimensionless numbers and heat transfer in nanocompositefluid shell and tube heat exchanger. J Therm Anal Calorim 143, 1537–1553 (2021). https://doi.org/10.1007/s10973-020-09579-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09579-x

Keywords

Navigation