Skip to main content
Log in

Changes in structure and composition of gypsum paste at elevated temperatures

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The structure and composition of the gypsum at elevated temperatures were studied by means of scanning electron microscopy, X-ray diffraction (XRD) and thermogravimetry (TG). The gypsum paste samples were heated to the temperatures from 50 to 1000 °C. The changes in the structure of gypsum were in good accordance with the changes in properties. The crystals of calcium sulphate dihydrate were disrupted at the temperature between 50 and 100 °C, and the strength decreased significantly; after heating to 700 °C, the crystals started to be thicker and packed closer to each other and the strength increased again. After heating to 1000 °C, the strength was the same as the original strength. The results of XRD showed that the changes of calcium sulphate forms (dihydrate to hemihydrate and then to different modifications of anhydrite) were not sudden but occurred gradually, and different forms of calcium sulphate existed in the heated gypsum paste together. It was confirmed that several parallel or subsequent reactions occurred during dehydration. The dehydration started at the temperature under 50 °C and lasted up to 500 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. West R, Sutton W. Thermography of gypsum. J Am Ceram Soc. 1954. https://doi.org/10.1111/j.1151-2916.1954.tb14027.x.

    Article  Google Scholar 

  2. Gruver R. Differential thermal-analysis studies of ceramic materials: III, characteristic heat effects of some sulfates. J Am Ceram Soc. 1951;34:353–7.

    Article  CAS  Google Scholar 

  3. Deutsch Y, Nathan Y, Sarig S. Thermogravimetric evaluation of the kinetics of the gypsum-hemihydrate-soluble anhydrite transitions. J Therm Anal. 1994. https://doi.org/10.1007/BF02546998.

    Article  Google Scholar 

  4. Karni J, Karni E. Gypsum in construction: origin and properties. Mater Struct. 1995. https://doi.org/10.1007/bf02473176.

    Article  Google Scholar 

  5. Kontogeorgos D, Founti M. Gypsum board dehydration kinetics at autogenous water vapour partial pressure. Thermochim Acta. 2012. https://doi.org/10.1016/j.tca.2012.07.009.

    Article  Google Scholar 

  6. Lou W, Guan B, Wu Z. Dehydration behavior of FGD gypsum by simultaneous TG and DSC analysis. J Therm Anal Calorim. 2010. https://doi.org/10.1007/s10973-010-1100-6.

    Article  Google Scholar 

  7. López-Beceiro J, Gracia-Fernández C, Tarrío-Saavedra J, et al. Study of gypsum by PDSC. J Therm Anal Calorim. 2012. https://doi.org/10.1007/s10973-012-2335-1.

    Article  Google Scholar 

  8. El Hazzat M, Sifou A, Arsalane S, El Hamidi A. Novel approach to thermal degradation kinetics of gypsum: application of peak deconvolution and model-free isoconversional method. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-010-1100-6.

    Article  Google Scholar 

  9. Seufert S, Hesse C, Goetz-Neunhoeffer F, Neubauer J. Quantitative determination of anhydrite III from dehydrated gypsum by XRD. Cem Concr Res. 2009. https://doi.org/10.1016/j.cemconres.2009.06.018.

    Article  Google Scholar 

  10. López-Beceiro J, Gracia-Fernández C, Tarrío-Saavedra J, Gómez-Barreiro S, Artiaga R. Study of gypsum by PDSC. J Therm Anal Calorim. 2012. https://doi.org/10.1007/s10973-012-2335-1.

    Article  Google Scholar 

  11. Thomas G. Thermal properties of gypsum plasterboard at high temperatures. Fire Mater. 2002. https://doi.org/10.1002/fam.786.

    Article  Google Scholar 

  12. Park S, Manzello S, Bentz D, Mizukami T. Determining thermal properties of gypsum board at elevated temperatures. Fire Mater. 2009. https://doi.org/10.1002/fam.1017.

    Article  Google Scholar 

  13. Doleželová M, Scheinherrová L, Krejsová J, Vimmrová A. Effect of high temperatures on gypsum-based composites. Constr Build Mater. 2018. https://doi.org/10.1007/s10973-018-7398-1.

    Article  Google Scholar 

  14. Tesárek P, Drchalová J, Kolísko J, Rovnaníková P, Černý R. Flue gas desulfurization gypsum: Study of basic mechanical, hydric and thermal properties. Constr Build Mater. 2007. https://doi.org/10.1016/j.conbuildmat.2006.05.009.

    Article  Google Scholar 

  15. Sebbahi S, Chameikh M, Sahban F, Aride J, Benarafa L, Belkbir L. Thermal behaviour of Moroccan phosphogypsum. Thermochim Acta. 1997. https://doi.org/10.1016/s0040-6031(97)00159-7.

    Article  Google Scholar 

  16. Wirsching, F. Calcium Sulfate. In: Ullmann's encyclopedia of industrial chemistry. Wiley, 2000; doi: 10.1002/14356007.a04_555.

  17. EN 13279-1:2008 Gypsum binders and gypsum plasters. Definitions and requirements.

  18. EN 13454-2: Binders, composite binders and factory made mixtures or floor screeds based on calcium sulfate. Test methods.

  19. EN 13279-2:2008 Gypsum binders and gypsum plasters. Test methods.

  20. Scheinherrová L, Doleželová M, Havlín J, Trník A. Thermal analysis of ternary gypsum-based binders stored in different environments. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7398-1.

    Article  Google Scholar 

  21. Vimmrová A, Keppert M, Michalko O, Černý R. Calcined gypsum–lime–metakaolin binders: design of optimal composition. Cem Concr Compos. 2014. https://doi.org/10.1016/j.cemconcomp.2014.05.011.

    Article  Google Scholar 

Download references

Acknowledgements

This research has been supported by the Czech Science Foundation (GAČR 19-08605S).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Vimmrová.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vimmrová, A., Krejsová, J., Scheinherrová, L. et al. Changes in structure and composition of gypsum paste at elevated temperatures. J Therm Anal Calorim 142, 19–28 (2020). https://doi.org/10.1007/s10973-020-09528-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09528-8

Keywords

Navigation