Skip to main content
Log in

Phloretic acid: a smart choice to develop low-temperature polymerizable bio-based benzoxazine thermosets

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present work demonstrates the synthesis of new bio-based benzoxazine monomers via Mannich-like condensation of naturally occurring raw materials, for example, phloretic acid (PA) and furfurylamine (fa)/stearylamine (sa). The structure of the benzoxazine monomers has been established using proton nuclear magnetic resonance, carbon nuclear magnetic resonance and Fourier transform infrared spectroscopies. The monomers undergoes thermally activated ring opening polymerization to form polybenzoxazine networks, as revealed by non-isothermal differential scanning calorimetry, and the curing temperature for both was observed to be less than 473 K. Curing parameters of the developed monomers have also been compared with the reported bio-based monomers. The rheological behaviour of PA-fa monomer shows that the monomer has narrow processing window with liquefaction temperature at 426 K and gelation temperature at 437 K. Thermal degradation behaviour of polybenzoxazines was studied using thermogravimetric analysis which reveals that polybenzoxazine based on furfurylamine shows relatively high thermal stability and char yield which is credited to the additional cross-linking sites provided by the furan ring.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3.
Fig. 4.
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lochab B, Shukla S, Varma IK. Naturally occurring phenolic sources: monomers and polymers. RSC Adv. 2014;4(42):21712–52.

    CAS  Google Scholar 

  2. Garrison T, Murawski A, Quirino R. Bio-based polymers with potential for biodegradability. Polymers. 2016;8(7):262.

    PubMed Central  Google Scholar 

  3. Babu RP, O’Connor K, Seeram R. Current progress on bio-based polymers and their future trends. Progr Biomater. 2013;2(1):8.

    Google Scholar 

  4. Ghosh N, Kiskan B, Yagci Y. Polybenzoxazines—new high performance thermosetting resins: synthesis and properties. Prog Polym Sci. 2007;32(11):1344–91.

    CAS  Google Scholar 

  5. Sharma P, Lochab B, Kumar D, Roy PK. Sustainable bis-benzoxazines from cardanol and PET-derived terephthalamides. ACS Sustain Chem Eng. 2015;4(3):1085–93.

    Google Scholar 

  6. Ishida H, Allen DJ. Mechanical characterization of copolymers based on benzoxazine and epoxy. Polymer. 1996;37(20):4487–95.

    CAS  Google Scholar 

  7. Ishida H, Allen DJ. Physical and mechanical characterization of near-zero shrinkage polybenzoxazines. J Polym Sci Part B Polym Phys. 1996;34(6):1019–30.

    CAS  Google Scholar 

  8. Ishida H, Low HY. A study on the volumetric expansion of benzoxazine-based phenolic resin. Macromolecules. 1997;30(4):1099–106.

    CAS  Google Scholar 

  9. Shen SB, Ishida H. Development and characterization of high-performance polybenzoxazine composites. Polym Compos. 1996;17(5):710–9.

    CAS  Google Scholar 

  10. Sharma P, Kumar D, Roy PK. Poly (benzoxazine-co-urea): a solventless approach towards the introduction of alternating urea linkages in polybenzoxazine. ChemistrySelect. 2017;2(19):5372–7.

    CAS  Google Scholar 

  11. Monisha M, Amarnath N, Mukherjee S, Lochab B. Cardanol benzoxazines: a versatile monomer with advancing applications. Macromol Chem Phys. 2019;220(3):1800470. https://doi.org/10.1002/macp.201800470.

    Article  CAS  Google Scholar 

  12. Shukla S, Mahata A, Pathak B, Lochab B. Cardanol benzoxazines—interplay of oxazine functionality (mono to tetra) and properties. RSC Adv. 2015;5(95):78071–80.

    CAS  Google Scholar 

  13. Ning X, Ishida H. Phenolic materials via ring-opening polymerization: synthesis and characterization of bisphenol-A based benzoxazines and their polymers. J Polym Sci Part A Polym Chem. 1994;32(6):1121–9.

    CAS  Google Scholar 

  14. Ishida H, inventor Edison Polymer Innovation Corp, assignee. Process for preparation of benzoxazine compounds in solventless systems. United States patent US5543516A. 1996.

  15. Sharma P, Kumar D, Roy PK. Microwave-assisted sustainable synthesis of telechelic poly (ethylene glycol) s with benzoxazine end groups. ChemistrySelect. 2016;1(21):6941–7.

    CAS  Google Scholar 

  16. Oliveira JR, Kotzebue LR, Ribeiro FW, Mota BC, Zampieri D, Mazzetto SE, et al. Microwave-assisted solvent-free synthesis of novel benzoxazines: a faster and environmentally friendly route to the development of bio-based thermosetting resins. J Polym Sci Part A Polym Chem. 2017;55(21):3534–44.

    CAS  Google Scholar 

  17. Calò E, Maffezzoli A, Mele G, Martina F, Mazzetto SE, Tarzia A, et al. Synthesis of a novel cardanol-based benzoxazine monomer and environmentally sustainable production of polymers and bio-composites. Green Chem. 2007;9(7):754–9.

    Google Scholar 

  18. Ribeiro FWM, Kotzebue LRV, Oliveira JR, Maia FJN, Mazzetto SE, Lomonaco D. Thermal and mechanical analyses of biocomposites from cardanol-based polybenzoxazine and bamboo fibers. J Therm Anal Calorim. 2017;129(1):281–9.

    CAS  Google Scholar 

  19. Thirukumaran P, Shakila A, Muthusamy S. Synthesis and characterization of novel bio-based benzoxazines from eugenol. RSC Adv. 2014;4(16):7959–66.

    CAS  Google Scholar 

  20. Sini N, Bijwe J, Varma IK. Renewable benzoxazine monomer from Vanillin: synthesis, characterization, and studies on curing behavior. J Polym Sci Part A Polym Chem. 2014;52(1):7–11.

    CAS  Google Scholar 

  21. Van A, Chiou K, Ishida H. Use of renewable resource vanillin for the preparation of benzoxazine resin and reactive monomeric surfactant containing oxazine ring. Polymer. 2014;55(6):1443–511.

    CAS  Google Scholar 

  22. Wang C, Sun J, Liu X, Sudo A, Endo T. Synthesis and copolymerization of fully bio-based benzoxazines from guaiacol, furfurylamine and stearylamine. Green Chem. 2012;14(10):2799–806.

    CAS  Google Scholar 

  23. Dettloff ML, White JE, Null MJ, inventors; Dow Global Technologies, assignee. High char yield benzoxazine compositions patent US6482946B1. 2002.

  24. Agag T, Takeichi T. Synthesis, characterization and clay-reinforcement of epoxy cured with benzoxazine. High Perform Polym. 2002;14(2):115–32.

    CAS  Google Scholar 

  25. Monisha M, Yadav N, Lochab B. Sustainable framework of chitosan-benzoxazine with mutual benefits: low curing temperature and improved thermal and mechanical properties. ACS Sustain Chem Eng. 2019;7(4):4473–85. https://doi.org/10.1021/acssuschemeng.8b06515.

    Article  CAS  Google Scholar 

  26. Andreu R, Reina J, Ronda J. Carboxylic acid-containing benzoxazines as efficient catalysts in the thermal polymerization of benzoxazines. J Polym Sci Part A Polym Chem. 2008;46(18):6091–101.

    CAS  Google Scholar 

  27. Picinelli A, Dapena E, Mangas JJ. Polyphenolic pattern in apple tree leaves in relation to scab resistance. A preliminary study. J Agric Food Chem. 1995;43(8):2273–8.

    CAS  Google Scholar 

  28. Trejo-Machin A, Verge P, Puchot L, Quintana R. Phloretic acid as an alternative to the phenolation of aliphatic hydroxyls for the elaboration of polybenzoxazine. Green Chem. 2017;19(21):5065–73.

    CAS  Google Scholar 

  29. Comí M, Lligadas G, Ronda JC, Galià M, Cádiz V. Renewable benzoxazine monomers from “lignin-like” naturally occurring phenolic derivatives. J Polym Sci Part A Polym Chem. 2013;51(22):4894–903.

    Google Scholar 

  30. Liu C, Shen D, Sebastián RM, Marquet J, Schönfeld R. Mechanistic studies on ring-opening polymerization of benzoxazines: a mechanistically based catalyst design. Macromolecules. 2011;44(12):4616–22.

    CAS  Google Scholar 

  31. Nyquist RA. Interpreting infrared, Raman, and nuclear magnetic resonance spectra. New York: Academic Press; 2001.

    Google Scholar 

  32. Sharma P, Kumar D, Roy PK. Enhancing the processibility of high temperature polymerizing cardanol derived benzoxazines using eco-friendly curing accelerators. Polymer. 2018;138:343–51.

    CAS  Google Scholar 

  33. Devaraju S, Krishnadevi K, Sriharshitha S, Alagar M. Design and development of environmentally friendly polybenzoxazine–silica hybrid from renewable bio-resource. J Polym Environ. 2019;27(1):141–7.

    CAS  Google Scholar 

  34. Minigher A, Benedetti E, De Giacomo O, Campaner P, Aroulmoji V. Synthesis and characterization of novel cardanol based benzoxazines. Nat Prod Commun. 2009;4(4):1934578X0900400416.

    Google Scholar 

  35. Ohashi S. Systematic studies of substituent effect on benzoxazines and application in its polymer form. Cleveland: Case Western Reserve University; 2017.

    Google Scholar 

  36. Hansch C, Leo A, Taft RW. A survey of Hammett substituent constants and resonance and field parameters. Chem Rev. 1991;91(2):165–95.

    CAS  Google Scholar 

  37. Ishida H, Rodriguez Y. Curing kinetics of a new benzoxazine-based phenolic resin by differential scanning calorimetry. Polymer. 1995;36(16):3151–8.

    CAS  Google Scholar 

  38. Jang J, Shin S. Cure studies of a benzoxazine-based phenolic resin by isothermal experiment. Polym J. 1995;27(6):601.

    CAS  Google Scholar 

  39. Sharma P, Srivastava M, Lochab B, Kumar D, Ramanan A, Roy PK. Metal-organic frameworks as curing accelerators for benzoxazines. ChemistrySelect. 2016;1(13):3924–32.

    CAS  Google Scholar 

  40. Sharma P, Lochab B, Kumar D, Roy PK. Interfacial encapsulation of bio-based benzoxazines in epoxy shells for temperature triggered healing. J Appl Polym Sci. 2015;132(47):42832.

    Google Scholar 

  41. Liu X, Gu Y. Study on the volumetric expansion of benzoxazine curing with different catalysts. J Appl Polym Sci. 2002;84(6):1107–13.

    CAS  Google Scholar 

  42. Lochab B, Varma IK, Bijwe J. Blends of benzoxazine monomers. J Therm Anal Calorim. 2013;111(2):1357–64.

    CAS  Google Scholar 

  43. Sudo A, Hirayama S, Endo T. Highly efficient catalysts-acetylacetonato complexes of transition metals in the 4th period for ring-opening polymerization of 1,3-benzoxazine. J Polym Sci, Part A: Polym Chem. 2010;48(2):479–84.

    CAS  Google Scholar 

  44. Liu Y-L, Chou C-I. High performance benzoxazine monomers and polymers containing furan groups. J Polym Sci Part A Polym Chem. 2005;43(21):5267–82.

    CAS  Google Scholar 

  45. Li S, Zou T. Synthesis, characterization of new carboxylic acid-containing benzoxazine and its cocuring behaviors with bisoxazoline. J Appl Polym Sci. 2012;123(2):922–8.

    CAS  Google Scholar 

  46. Schnell I, Brown SP, Low HY, Ishida H, Spiess HW. An investigation of hydrogen bonding in benzoxazine dimers by fast magic-angle spinning and double-quantum 1H NMR spectroscopy. J Am Chem Soc. 1998;120(45):11784–95.

    CAS  Google Scholar 

  47. Kim H-D, Ishida H. A study on hydrogen-bonded network structure of polybenzoxazines. J Phys Chem A. 2002;106(14):3271–80.

    CAS  Google Scholar 

  48. Zúñiga C, Larrechi M, Lligadas G, Ronda J, Galià M, Cádiz V. Polybenzoxazines from renewable diphenolic acid. J Polym Sci Part A Polym Chem. 2011;49(5):1219–27.

    Google Scholar 

  49. Van Krevelen D. Some basic aspects of flame resistance of polymeric materials. Polymer. 1975;16(8):615–20.

    Google Scholar 

Download references

Acknowledgements

PS acknowledges Indian Institute of Technology Delhi, India for providing Postdoctoral fellowship. LN and JB acknowledges Indian Institute of Technology Delhi, India for financial support in the form of Faculty Interdisciplinary Research Project (FIRP, MI01432) grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leena Nebhani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 80 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirubakaran, R., Sharma, P., Manisekaran, A. et al. Phloretic acid: a smart choice to develop low-temperature polymerizable bio-based benzoxazine thermosets. J Therm Anal Calorim 142, 1233–1242 (2020). https://doi.org/10.1007/s10973-019-09228-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09228-y

Keywords

Navigation