Skip to main content
Log in

Thermal decomposition and structural dynamics in perovskite (C2H5NH3)2CdCl4 crystals

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, (C2H5NH3)2CdCl4 single crystals were grown, and their thermal properties were studied by the thermogravimetric analysis and differential scanning calorimetry. Phase transition temperature above room temperature was observed at 470 K. In addition, the cation dynamics in this crystal were investigated by 1H magic-angle spinning nuclear magnetic resonance (MAS NMR) and 13C cross-polarization (CP)/MAS NMR experiments. The Bloembergen–Purcell–Pound curves for 1H T and 13C T in C2H5NH3 cation exhibited minimum values, and these curves represent C2H5NH3 and C2H5 rotational motions. The activation energy for 1H in the C2H5NH3 cation is Ea = 22.63 kJ mol−1, whereas those for 13C in CH3 and CH2 are Ea = 18.05 and 19.14 kJ mol−1, respectively. Furthermore, the proton dynamics of C2H5NH3 undergo faster rotation than carbons. This implies that the molecular motion for 1H is enhanced at the C-end and N-end of an organic cation, whereas the molecular motion is not free at the main chain carbons of the organic cation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Elwej R, Hannachi N, Chaabane I, Oueslati A, Hlel F. Structural, characterization and AC conductivity of bis-2-amino-6-picolinium tetrachloromercurate, (C6H9N2)2HgCl4. Inorg Chim Acta. 2013;406:10.

    Article  CAS  Google Scholar 

  2. Oueslati A, Bulou A, Calvayrac F, Adil K, Gargouri M, Hlel F. Infrared, polarized Raman and ab initio calculations of the vibrational spectra of [N(C3H7)4]2Cu2Cl6 crystals. Vib Spectrosc. 2013;64:10–20.

    Article  CAS  Google Scholar 

  3. Oliveira LH, Moura AP, Longo E, Varela JA, Rosa ILV. Luminescent properties of hybrid materials prepared by the polymeric precursor method. J Alloys Compd. 2013;579:227–35.

    Article  CAS  Google Scholar 

  4. Hajlaoui S, Chaabane I, Oueslati A, Guidara K, Bulou A. A theoretical study on the molecular structure and vibrational (FT-IR and Raman) spectra of new organic-inorganic compound [N(C3H7)4]2SnCl6. Spectrochim Acta Part A. 2014;117:225–33.

    Article  CAS  Google Scholar 

  5. Lefi R, Naser FB, Guermazi H. Structural, optical properties and characterization of (C2H5NH3)2CdCl4, (C2H5NH3)2CuCl4 and (C2H5NH3)2Cd0.5Cu0.5Cl4 compounds. J Alloys Compd. 2017;696:1244.

    Article  CAS  Google Scholar 

  6. Nasr FB, Lefi R, Guermazi H. Analysis of high temperature phase transitions of copper doped (C2H5NH3)2CdCl4 perovskite. J Mol Struct. 2018;1165:236.

    Article  Google Scholar 

  7. Ohnishi A, Tanaka KI, Kitaura M, Otomo T, Yoshinari T. Optical spectra of inorganic–organic compounds (C2H5NH3)2CdCl4 in 3–30 eV range. J Phys Soc Jpn. 2001;70:3424–7.

    Article  CAS  Google Scholar 

  8. Elseman AM, Shalan AE, Sajid S, Rashad MM, Hassan AM, Li M. Copper-substituted lead perovskite materials constructed with different halides for working (CH3NH3)2CuX4-based perovskite solar cells from experimental and theoretical view. ACS Appl Mater Interfaces. 2018;10:11699.

    Article  CAS  Google Scholar 

  9. Aramburu JA, Garcia-Fernandez P, Mathiesen NR, Garcia-Lastra JM, Moreno M. Changing the usual interpretation of the structure and ground state of Cu2+-layered perovskite. J Phys Chem C. 2018;122:5071.

    Article  CAS  Google Scholar 

  10. Geick R, Strobel K. Symmetry of the lattice vibrations in perovskite-type layer structures. J Phys C Solid State Phys. 1977;10:4221–39.

    Article  CAS  Google Scholar 

  11. Peyrard M, Remoissenet M. Optical phonons line broadening at the first order phase transition of (C2H5NH3)2CdCl4: a spin-phonon coupled system. J Chem Phys. 1979;71:2732.

    Article  CAS  Google Scholar 

  12. Levstik A, Filipic C. Dielectric study of the (C2H5NH3)2CdCl4 monocrystal. Phys Stat Sol (a). 1980;58:k165.

    Article  CAS  Google Scholar 

  13. Yoshinari T, Matsuyama T, Yamaoka H, Aoyagi K. Optical properties of electron trapped center in layered ionic crystals (CH3NH3)2CdCl4 and (C2H5NH3)2CdCl4 irradiated with X-rays at 15 K. J Phys Soc Jpn. 1989;58:4222.

    Article  CAS  Google Scholar 

  14. Moral BA, Rodriguez F. Dependence of the change transfer spectra of (C2H5NH3)2CdCl4:Cu2+ with hydrogstatic pressure:structural changes…. J Phys Chem Solids. 1997;58:1487.

    Article  CAS  Google Scholar 

  15. Ohnishi A, Tanaka KI, Yoshinari T. Exciton self-trapping in two dimensional system of (C2H5NH3)2CdCl4 single crystal. J Phys Soc Jpn. 1999;68:288.

    Article  CAS  Google Scholar 

  16. Ohwada K, Ishii K, Inami T, Murakami Y, Shobu T, Ohsumi H, Ikeda N, Ohishi Y. Structural properties and phase transition of hole-orbital-ordered (C2H5NH3)2CuCl4 studied by resonant and non-resonant X-ray scatterings under high pressure. Phys Rev B. 2005;72:14123–33.

    Article  Google Scholar 

  17. Rao CNR, Cheetham AK, Thirumurugan A. Hybrid inorganic–organic materials: a new family in condensed matter physics. J Phys Condens Matter. 2008;20:083202.

    Article  Google Scholar 

  18. Zhang W, Xiong RG. Ferroelectric metal–organic frameworks. Chem Rev. 2012;112:1163–95.

    Article  CAS  Google Scholar 

  19. Mohamed CB, Karoui K, Saidi S, Guidara K, Rhaiem AB. Electrical properties, phase transitions and conduction mechanisms of the [(C2H5)NH3]2CdCl4 compound. Physica B. 2014;451:87–95.

    Article  CAS  Google Scholar 

  20. Yadav R, Swain D, Kundu PP, Nair HS, Narayana C, Elizabeth S. Dielectric and Raman investigations of structural phase transitions in (C2H5NH3)2CdCl4. Phys Chem Chem Phys. 2015;17:12207.

    Article  CAS  Google Scholar 

  21. Chapuis G. X-ray study of the first-order phase transition Pcab-Bmab in (CH3CH2NH3)2CdCl4. Phys Stat Sol (a). 1977;43:203.

    Article  CAS  Google Scholar 

  22. Hagemann H, Bill H. Raman investigation on structural phase transitions in (C2H5NH3)2CdCl4. Chem Phys Lett. 1982;93:582–5.

    Article  CAS  Google Scholar 

  23. Lim AR, Kim SW, Joo YL. Structural phase transitions and ferroelastic properties of perovskite-type layered (CH3NH3)2CdCl4. J Appl Phys. 2017;121:215501.

    Article  Google Scholar 

  24. Wieser ME. Atomic weights of the elements 2005 (IUPAC technical report). Pure Appl Chem. 2005;78:2051–66.

    Article  Google Scholar 

  25. Koenig JL. Spectroscopy of polymers. New York: Elsevier; 1999.

    Book  Google Scholar 

  26. Mcbrierty VJ, Packer KJ. Nuclear magnetic resonance in solid polymers. Cambridge: Cambridge University Press; 1993.

    Book  Google Scholar 

  27. Abragam A. The principles of nuclear magnetism. Oxford: Oxford University Press; 1961.

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (2018R1D1A1B07041593).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ae Ran Lim.

Ethics declarations

Conflict of interest

The authors decalre that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, A.R. Thermal decomposition and structural dynamics in perovskite (C2H5NH3)2CdCl4 crystals. J Therm Anal Calorim 142, 2243–2249 (2020). https://doi.org/10.1007/s10973-019-09187-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09187-4

Keywords

Navigation