Skip to main content
Log in

Thermal risk assessment for the epoxidation of linseed oil by classical Prisleschajew epoxidation and by direct epoxidation by H2O2 on alumina

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Substitution of fossil feedstock by vegetable oils is growing due to environmental constraints and oil depletion. Among the different valorization routes for vegetable oils, epoxidation of their unsaturation is widely used. The epoxidation is an exothermic reaction which could lead to a thermal runaway. There are different routes for the vegetable oil epoxidation: Prileschajew by performic and peracetic acid, which are the most used. Another promising alternative is the direct epoxidation by hydrogen peroxide by alumina. The goal of this manuscript is to rank the thermal risk of these three epoxidation routes by determining the safety parameter time to maximum rate under adiabatic condition. The Advanced Reactive System Screening Tool was used to conduct these experiments. It was found that the direct epoxidation is safer than the two other routes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

\(\hat{C}_{{{\text{P}}_{\text{R}} }}\) :

Specific heat capacity (J kg−1 K−1)

E a :

Activation energy (J mol−1)

ΔH :

Reaction enthalpy (J mol−1)

m R :

Mass of reaction mixture (kg)

q el :

Electrical heating rate (°C min−1)

q r :

Heat flow rate due to chemical reactions (J s−1)

R :

Gas constant (J K−1 mol−1)

ΔTad :

Adiabatic temperature rise (°C)

T 1 :

Temperature of the reaction mixture (°C)

T Ref :

Reference temperature (°C)

\(T_{\text{i}}\) :

Experimental temperature

\(T_{\text{P}}\) :

Process temperature

V :

Volume (L)

β :

Background heating rate (°C min−1)

AA:

Acetic acid

ARSST:

Advanced Reactive System Screening Tool

CA:

Carboxylic acid

DB:

Double bond

FA:

Formic acid

HP:

Hydrogen peroxide

TMRad(TP):

Time to maximum rate under adiabatic conditions at TP (min)

W :

Water

aq:

Aqueous

Ep:

Epoxidation

ins:

Insert

R :

Reaction

org:

Organic

perh:

Perhydrolysis

T :

Total

0:

Initial

References

  1. Fukuda H, Kondo A, Noda H. Biodiesel fuel production by transesterification of oils. J Biosci Bioeng. 2001;92:405–16.

    Article  CAS  PubMed  Google Scholar 

  2. Körbitz W. Biodiesel production in Europe and North America, an encouraging prospect. Renew Energy. 1999;16:1078–83.

    Article  Google Scholar 

  3. Leung DYC, Wu X, Leung MKH. A review on biodiesel production using catalyzed transesterification. Appl Energy. 2010;87:1083–95.

    Article  CAS  Google Scholar 

  4. Santacesaria E, Vicente GM, Di Serio M, Tesser R. Main technologies in biodiesel production: state of the art and future challenges. Catal Today. 2012;195:2–13.

    Article  CAS  Google Scholar 

  5. Di Serio M, Tesser R, Pengmei L, Santacesaria E. Heterogeneous catalysts for biodiesel production. Energy Fuels. 2008;22:207–17.

    Article  CAS  Google Scholar 

  6. Danov SM, Kazantsev OA, Esipovich AL, Belousov AS, Rogozhin AE, Kanakov EA. Recent advances in the field of selective epoxidation of vegetable oils and their derivatives: a review and perspective. Catal Sci Technol. 2017;7:3659–75.

    Article  CAS  Google Scholar 

  7. Cai X, Zheng JL, Wärnå J, Salmi T, Taouk B, Leveneur S. Influence of gas-liquid mass transfer on kinetic modeling: carbonation of epoxidized vegetable oils. Chem Eng J. 2017;313:1168–83.

    Article  CAS  Google Scholar 

  8. Zheng JL, Burel F, Salmi T, Taouk B, Leveneur S. Carbonation of vegetable oils: influence of mass transfer on reaction kinetics. Ind Eng Chem Res. 2015;54:10935–44.

    Article  CAS  Google Scholar 

  9. Pérez-Sena WY, Cai X, Kebir N, Vernières-Hassimi L, Serra C, Salmi T, et al. Aminolysis of cyclic-carbonate vegetable oils as a non-isocyanate route for the synthesis of polyurethane: a kinetic and thermal study. Chem Eng J. 2018;346:271–80.

    Article  CAS  Google Scholar 

  10. Sawpan MA. Polyurethanes from vegetable oils and applications: a review. J Polym Res. 2018;25:184.

    Article  CAS  Google Scholar 

  11. Köckritz A, Martin A. Oxidation of unsaturated fatty acid derivatives and vegetable oils. Eur J Lipid Sci Technol. 2008;110:812–24.

    Article  CAS  Google Scholar 

  12. Abraham ME, Benenati RF. Kinetics and mechanism of the epoxidation of unsaturated fatty acids. AIChE J. 1972;18:807–11.

    Article  CAS  Google Scholar 

  13. Prileschajew N. Oxydation ungesättigter Verbindungen mittels organischer Superoxyde. Ber Deutsch Chem Ges. 1909;42:4811–5.

    Article  CAS  Google Scholar 

  14. Rangarajan B, Havey A, Grulke EA, Culnan PD. Kinetic parameters of a two-phase model for in situ epoxidation of soybean oil. J Am Oil Chem Soc. 1995;72:1161–9.

    Article  CAS  Google Scholar 

  15. Wisniak J, Navarrete E. Epoxidation of fish oil, kinetic and optimization model. Prod R&D. 1970;9:33–41.

    CAS  Google Scholar 

  16. Wisniak J, Cancino A, Vega JC. Epoxidation of anchovy oils. a study of variables. I&EC Prod Res Dev. 1964;3:306–11.

    Article  CAS  Google Scholar 

  17. Zheng JL, Wärnå J, Salmi T, Burel F, Taouk B, Leveneur S. Kinetic modeling strategy for an exothermic multiphase reactor system: application to vegetable oils epoxidation using Prileschajew method. AIChE J. 2016;62:726–41.

    Article  CAS  Google Scholar 

  18. Santacesaria E, Tesser R, Di Serio M, Turco R, Russo V, Verde D. A biphasic model describing soybean oil epoxidation with H2O2 in a fed-batch reactor. Chem Eng J. 2011;173:198–209.

    Article  CAS  Google Scholar 

  19. Cai X, Zheng JL, Aguilera AF, Vernières-Hassimi L, Tolvanen P, Salmi T, et al. Influence of ring-opening reactions on the kinetics of cottonseed oil epoxidation. Int J Chem Kinet. 2018;50:726–41.

    Article  CAS  Google Scholar 

  20. Leveneur S. Thermal safety assessment through the concept of structure–reactivity: application to vegetable oil valorization. Org Process Res Dev. 2017;21:543–50.

    Article  CAS  Google Scholar 

  21. Leveneur S, Pinchard M, Rimbault A, Safdari Shadloo M, Meyer T. Parameters affecting thermal risk through a kinetic model under adiabatic condition: application to liquid-liquid reaction system. Thermochim Acta. 2018;666:10–7.

    Article  CAS  Google Scholar 

  22. Leveneur S, Estel L, Crua C. Thermal risk assessment of vegetable oil epoxidation. J Therm Anal Calorim. 2015;122:795–804.

    Article  CAS  Google Scholar 

  23. de Quadros JV Jr., Giudici R. Epoxidation of soybean oil at maximum heat removal and single addition of all reactants. Chem Eng Process Process Intensif. 2016;100:87–93.

    Article  CAS  Google Scholar 

  24. Vianello C, Piccolo D, Lorenzetti A, Salzano E, Maschio G. Study of soybean oil epoxidation: effects of sulfuric acid and the mixing program. Ind Eng Chem Res. 2018;57:11517–25.

    Article  CAS  Google Scholar 

  25. Vianello C, Salzano E, Maschio G. Thermal behaviour of peracetic acid for the epoxydation of vegetable oils in the presence of catalyst. Process Saf Environ Prot. 2018;116:718–26.

    Article  CAS  Google Scholar 

  26. Casson Moreno V, Russo V, Tesser R, Di Serio M, Salzano E. Thermal risk in semi-batch reactors: the epoxidation of soybean oil. Process Saf Environ Prot. 2017;109:529–37.

    Article  CAS  Google Scholar 

  27. Dakkoune A, Vernières-Hassimi L, Leveneur S, Lefebvre D, Estel L. Risk analysis of French chemical industry. Saf Sci. 2018;105:77–85.

    Article  Google Scholar 

  28. Scotti N, Ravasio N, Psaro R, Evangelisti C, Dworakowska S, Bogdal D, et al. Copper mediated epoxidation of high oleic natural oils with a cumene—O2 system. Catal Commun. 2015;64:80–5.

    Article  CAS  Google Scholar 

  29. Sepulveda J, Teixeira S, Schuchardt U. Alumina-catalyzed epoxidation of unsaturated fatty esters with hydrogen peroxide. Appl Catal A Gen. 2007;318:213–7.

    Article  CAS  Google Scholar 

  30. Di Serio M, Turco R, Pernice P, Aronne A, Sannino F, Santacesaria E. Valuation of Nb2O5–SiO2 catalysts in soybean oil epoxidation. Catal Today. 2012;192:112–6.

    Article  CAS  Google Scholar 

  31. Turco R, Pischetola C, Tesser R, Andini S, Serio MD. New findings on soybean and methylester epoxidation with alumina as the catalyst. RSC Adv. 2016;6:31647–52.

    Article  CAS  Google Scholar 

  32. Parada Hernandez NL, Bonon AJ, Bahú JO, Barbosa MIR, Wolf Maciel MR, Filho RM. Epoxy monomers obtained from castor oil using a toxicity-free catalytic system. J Mol Catal A: Chem. 2017;426:550–6.

    Article  CAS  Google Scholar 

  33. Koskinen H, Leveneur S, Sundquist A, Musakka N, Salmi T, Renvall I. Functionality of poly(α-hydroxyacrylic acid) as H2O2 stabilizing agent. Oxid Commun. 2010;2:258–74.

    Google Scholar 

  34. Stoessel F. Thermal safety of chemical processes. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2008.

    Book  Google Scholar 

  35. Leveneur S, Vernieres-Hassimi L, Salmi T. Mass and energy balances coupling in chemical reactors for a better understanding of thermal safety. Educ Chem Eng. 2016;16:17–28.

    Article  Google Scholar 

  36. Marco E, Cuartielles S, Peña JA, Santamaria J. Simulation of the decomposition of di-cumyl peroxide in an ARSST unit. Thermochim Acta. 2000;362:49–58.

    Article  CAS  Google Scholar 

  37. Fauske HK. Managing chemical reactivity—Minimum best practice. Process Saf Prog. 2006;25:120–9.

    Article  CAS  Google Scholar 

  38. Burelbach JP. Advanced reactive system screening tool (ARSST). In: 28th Annual conference North American, Thermal Analysis Society (NATAS), Orlando, Oct 4–6, 2000.

  39. Zhu W, Papadaki MI, Han Z, Mashuga CV. Effect of temperature and selected additives on the decomposition “onset” of 2-nitrotoluene using advanced reactive system screening tool. J Loss Prev Process Ind. 2017;49:630–5.

    Article  CAS  Google Scholar 

  40. Tang W, Sarvestani M, Wei X, Nummy LJ, Patel N, Narayanan B, et al. Formation of 2-trifluoromethylphenyl grignard reagent via magnesium − halogen exchange: process safety evaluation and concentration effect. Org Process Res Dev. 2009;13:1426–30.

    Article  CAS  Google Scholar 

  41. Fogler HS. Elements of chemical reaction engineering. Upper Saddle River: Prentice Hall Inc; 1999.

    Google Scholar 

  42. KamalaJyotsna G, Srikanth S, Ratnaparkhi V, Ichhora BR. Reaction calorimetry as a tool for thermal risk assessment and improvement of safe scalable chemical processes. Inorg Chem Indian J. 2017;12:1–14.

    Google Scholar 

  43. Salem IA, Salem MA, Gemeay AH. Kinetics of heterogeneous decomposition of hydrogen peroxide with some transition metal complexes supported on silica-alumina in aqueous medium. J Mol Catal. 1993;84:67–75.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study has been done in the framework of Task 2: “Green process: second generation of biomass” of AMED project. The authors thank AMED project. The AMED project has been funded with the support from the European Union with the European Regional Development Fund (ERDF) and from the Regional Council of Normandie. The authors thank the Ministry of High Education, Science and Technology of Dominican Republic (MESCyT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Leveneur.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Sena, W.Y., Salmi, T., Estel, L. et al. Thermal risk assessment for the epoxidation of linseed oil by classical Prisleschajew epoxidation and by direct epoxidation by H2O2 on alumina. J Therm Anal Calorim 140, 673–684 (2020). https://doi.org/10.1007/s10973-019-08894-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08894-2

Keywords

Navigation