Skip to main content
Log in

Boric acid (H3BO3) as flux agent of clay-based ceramics, B2O3 effect in clay thermal behavior and resultant ceramics properties

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Ceramic materials were satisfactorily processed through a dry scalable process from binary clay–boric acid (H3BO3) mixtures. Relevant thermal parameters were established by a multitechnique approach that included thermogravimetric, differential thermal analysis, dilatometric analysis and structural and microstructural characterization of fired samples. Both clay and boric acid thermal processes were described and correlated. The experimental textural properties evidenced a porosity decrease with sintering temperature and acid addition in the 1100–1300 °C range. The amount of glass was strongly increased by the boron oxide incorporation, confirming its fluxing capacity. X-ray diffraction, supplemented by Rietveld–Le Bail refinement, verified the presence and thermal evolution of crystalline and glassy phases. The observed microstructure was similar to other clay-based ceramics, with quartz, cristobalite and mullite grains imbibed in the silica-based glassy phase. The observed mullite phase was actually a boron mullite solid solution. Boric acid was confirmed as an adequate boron oxide source. The present study gives information for further clay-based materials design with boron oxide as fluxing agent. The dry route hypothesis was confirmed. Both formulation and firing programs can be optimized. High boron addition (5 mass%) is not recommended due to the observed partial rehydration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Serra MF, Conconi MS, Suarez G, Agietti EF, Rendtorff NM. Firing transformations of an argentinean calcareous commercial clay. Ceramica. 2013;59:254–61.

    Article  CAS  Google Scholar 

  2. Dondi M, Raimondo M, Zanelli C. Clays and bodies for ceramic tiles: reappraisal and technological classification. Appl Clay Sci. 2014;96:91–109.

    Article  CAS  Google Scholar 

  3. Chakraborty AK. Phase transformation of kaolinite clay. Springer, New Delhi; 2014. http://dx.doi.org/10.1007/978-81-322-1154-9.

  4. Chandrasekhar S, Ramaswamy S. Influence of mineral impurities on the properties of kaolin and its thermally treated products. Appl Clay Sci. 2002;21:133–42.

    Article  CAS  Google Scholar 

  5. Liu P. Polymer modified clay minerals: a review. Appl Clay Sci. 2007;38:64–76.

    Article  CAS  Google Scholar 

  6. Liu X-J, Sun XW, Zhang JJ, Pu XP, Ge QM, Huang LP. Fabrication of β-sialon powder from kaolin. Mater Res Bull. 2003;38:1939–48.

    Article  CAS  Google Scholar 

  7. She JH, Ohji T. Fabrication and characterization of highly porous mullite ceramics. Mater Chem Phys. 2003;80:610–4.

    Article  CAS  Google Scholar 

  8. Iqbal Y, Lee WE. Microstructural evolution in triaxial porcelain. J Am Ceram Soc. 2000;83:3121–7.

    Article  CAS  Google Scholar 

  9. Carty WM, Senapati U. Porcelain—raw materials, processing, phase evolution, and mechanical behavior. J Am Ceram Soc. 1998;81:3–20.

    Article  CAS  Google Scholar 

  10. Liang F, Sayed M, Al-Muntasheri GA, Chang FF, Li L. A comprehensive review on proppant technologies. Petroleum. 2016;2:26–39.

    Article  Google Scholar 

  11. Agrafiotis C, Tsoutsos T. Energy saving technologies in the European ceramic sector: a systematic review. Appl Therm Eng. 2001;21:1231–49.

    Article  Google Scholar 

  12. Bovea MD, Díaz-Albo E, Gallardo A, Colomer FJ, Serrano J. Environmental performance of ceramic tiles: improvement proposals. Mater Des. 2010;31:35–41.

    Article  CAS  Google Scholar 

  13. Sánchez E, García-Ten J, Sanz V, Moreno A. Porcelain tile: almost 30 years of steady scientific-technological evolution. Ceram Int. 2010;36:831–45.

    Article  CAS  Google Scholar 

  14. Kartal A, Arpaozu A. Effects of a boron containing calcination product to porcelains on the final properties. Key Eng Mater. 2004; https://www.scientific.net/KEM.264-268.1653. Accessed 15 Aug 2018.

  15. Lührs H, Fischer RX, Schneider H. Boron mullite: formation and basic characterization. Mater Res Bull. 2012;47:4031–42.

    Article  CAS  Google Scholar 

  16. Kavas T. Use of boron waste as a fluxing agent in production of red mud brick. Build Environ. 2006;41:1779–83.

    Article  Google Scholar 

  17. Harabi A, Guerfa F, Harabi E, Benhassine M-T, Foughali L, Zaiou S. Preparation and characterization of new dental porcelains, using K-feldspar and quartz raw materials. Effect of B2O3 additions on sintering and mechanical properties. Mater Sci Eng, C. 2016;65:33–42.

    Article  CAS  Google Scholar 

  18. Olgun A, Erdogan Y, Ayhan Y, Zeybek B. Development of ceramic tiles from coal fly ash and tincal ore waste. Ceram Int. 2005;31:153–8.

    Article  CAS  Google Scholar 

  19. Kurama S, Kara A, Kurama H. The effect of boron waste in phase and microstructural development of a terracotta body during firing. J Eur Ceram Soc. 2006;26:755–60.

    Article  CAS  Google Scholar 

  20. Richerson DW. Modern ceramic engineering: properties, processing, and use in design. 3rd ed. Boca Raton: CRC Press; 2005.

    Book  Google Scholar 

  21. A Preparação a Seco de Massas Cerâmicas. http://scholar.googleusercontent.com/scholar?q=cache:Pb1zWeSvOa8J:scholar.google.com/&hl=es&as_sdt=0,5. Accessed 15 Aug 2018.

  22. Sousa SJG, Holanda JNF. Development of red wall tiles by the dry process using Brazilian raw materials. Ceram Int. 2005;31:215–22.

    Article  CAS  Google Scholar 

  23. Dondi M. Feldspathic fluxes for ceramics: sources, production trends and technological value. Resour Conserv Recycl. 2018;133:191–205.

    Article  Google Scholar 

  24. Akpinar S, Evcin A, Ozdemir Y. Effect of calcined colemanite additions on properties of hard porcelain body. Ceram Int. 2017;43:8364–71.

    Article  CAS  Google Scholar 

  25. Bragança SR, Bergmann CP. Waste glass in porcelain. Mater Res. 2005;8:39–44.

    Article  Google Scholar 

  26. Dominguez E, Cravero F. Los recursos de caolín de Chubut y Santa Cruz. Recur Miner Repúb Argent. Zappettini E.O. Argentina: Instituto de Geología y Recursos Minerales. Secretaría de Estado de Geología y Minería de Argentina; 1999. p. 1265–1272.

  27. Bish DL, Post JE. Quantitative mineralogical analysis using the Rietveld full-pattern fitting method. Am Mineral. 1993;78:932–40.

    CAS  Google Scholar 

  28. Bish DL, Howard SA. Quantitative phase analysis using the Rietveld method. J Appl Crystallogr. 1988;21:86–91.

    Article  CAS  Google Scholar 

  29. Le Bail A. Modelling the silica glass structure by the Rietveld method. J Non Cryst Solids. 1995;183:39–42.

    Article  Google Scholar 

  30. Quantitative analysis of silicate glass in ceramic materials by the rietveld method. http://www.ing.unitn.it/~luttero/Publications/EPDIC_V/silicate_glass.html. Accessed 16 Feb 2018.

  31. MacKenzie KJD, Meinhold RH, Brown IWM, White GV. The formation of mullite from kaolinite under various reaction atmospheres. J Eur Ceram Soc. 1996;16:115–9.

    Article  CAS  Google Scholar 

  32. Okada K, ŌTsuka N, Ossaka J. Characterization of spinel phase formed in the kaolin–mullite thermal sequence. J Am Ceram Soc. 1986;69:C-251–3.

    Article  Google Scholar 

  33. Sanz J, Madani A, Serratosa JM, Moya JS, Aza S. Aluminum-27 and silicon-29 magic-angle spinning nuclear magnetic resonance study of the kaolinite-mullite transformation. J Am Ceram Soc. 1988;71:C418–21.

    Article  CAS  Google Scholar 

  34. Schneider H, Schreuer J, Hildmann B. Structure and properties of mullite—a review. J Eur Ceram Soc. 2008;28:329–44.

    Article  CAS  Google Scholar 

  35. De Aza AH, Turrillas X, Rodriguez MA, Duran T, Pena P. Time-resolved powder neutron diffraction study of the phase transformation sequence of kaolinite to mullite. J Eur Ceram Soc. 2014;34:1409–21.

    Article  CAS  Google Scholar 

  36. Sevim F, Demir F, Bilen M, Okur H. Kinetic analysis of thermal decomposition of boric acid from thermogravimetric data. Korean J Chem Eng. 2006;23:736–40.

    Article  CAS  Google Scholar 

  37. Hernández MF, Suárez G, Cipollone M, Conconi MS, Aglietti EF, Rendtorff NM. Formation, microstructure and properties of aluminum borate ceramics obtained from alumina and boric acid. Ceram Int. 2017;43:2188–95.

    Article  CAS  Google Scholar 

  38. Gielisse PJM, Foster WR. The system Al2O3–B2O3. Nature. 1962;195:69–70.

    Article  CAS  Google Scholar 

  39. Hernández MF, Suárez G, Cipollone M, Aglietti EF, Rendtorff NM. Mechanical behavior and microstructure of porous needle: aluminum borate (Al18B4O33) and Al2O3–Al18B4O33 composites. Ceram Int. 2017;43:11759–65.

    Article  CAS  Google Scholar 

  40. Zanelli C, Raimondo M, Guarini G, Dondi M. The vitreous phase of porcelain stoneware: composition, evolution during sintering and physical properties. J Non Cryst Solids. 2011;357:3251–60.

    Article  CAS  Google Scholar 

  41. Dondi M, Iglesias C, Dominguez E, Guarini G, Raimondo M. The effect of kaolin properties on their behaviour in ceramic processing as illustrated by a range of kaolins from the Santa Cruz and Chubut Provinces, Patagonia (Argentina). Appl Clay Sci. 2008;40:143–58.

    Article  CAS  Google Scholar 

  42. Decterov SA, Swamy V, Jung I-H. Thermodynamic modeling of the B2O3–SiO2 and B2O3–Al2O3 systems. Int J Mater Res. 2007;98:987–94.

    Article  CAS  Google Scholar 

  43. Hammel EC, Ighodaro OL-R, Okoli OI. Processing and properties of advanced porous ceramics: an application based review. Ceram Int. 2014;40:15351–70.

    Article  CAS  Google Scholar 

  44. Smith DS, Alzina A, Bourret J, Nait-Ali B, Pennec F, Tessier-Doyen N, et al. Thermal conductivity of porous materials. J Mater Res. 2013;28:2260–72.

    Article  CAS  Google Scholar 

  45. Studart AR, Gonzenbach UT, Tervoort E, Gauckler LJ. Processing routes to macroporous ceramics: a review. J Am Ceram Soc. 2006;89:1771–89.

    Article  CAS  Google Scholar 

  46. Meille S, Lombardi M, Chevalier J, Montanaro L. Mechanical properties of porous ceramics in compression: on the transition between elastic, brittle, and cellular behavior. J Eur Ceram Soc. 2012;32:3959–67.

    Article  CAS  Google Scholar 

  47. Butler MA, Dyson DJ. The quantification of different forms of cristobalite in devitrified alumino-silicate ceramic fibres. J Appl Crystallogr. 1997;30:467–75.

    Article  CAS  Google Scholar 

  48. Hernández MF, Conconi MS, Cipollone M, Herrera MS, Rendtorff NM. Ceramic behavior of ball clay with gadolinium oxide (Gd2O3) addition. Appl Clay Sci. 2017;146:380–7.

    Article  CAS  Google Scholar 

  49. Madsen IC, Finney RJ, Flann RCA, Frost MT, Wilson BW. Quantitative analysis of high-alumina refractories using X-ray powder diffraction data and the rietveld method. J Am Ceram Soc. 1991;74:619–24.

    Article  CAS  Google Scholar 

  50. Andrini L, Gauna MR, Conconi MS, Suarez G, Requejo FG, Aglietti EF, et al. Extended and local structural description of a kaolinitic clay, its fired ceramics and intermediates: an XRD and XANES analysis. Appl Clay Sci. 2016;124–125:39–45.

    Article  CAS  Google Scholar 

  51. Conconi MS, Gauna MR, Serra MF, Suarez G, Aglietti EF, Rendtorff NM. Quantitative firing transformations of a triaxial ceramic by X-ray diffraction methods. Ceramica. 2014;60:524–31.

    Article  CAS  Google Scholar 

  52. Kolitsch U, Seifert HJ, Aldinger F. Phase relationships in the system Gd2O3–Al2O3–SiO2. J Alloys Compd. 1997;257:104–14.

    Article  CAS  Google Scholar 

  53. Swamy V, Jung I-H, Decterov SA. Thermodynamic modeling of the Al2O3–B2O3–SiO2 system. J Non Cryst Solids. 2009;355:1679–86.

    Article  CAS  Google Scholar 

  54. Zhang G, Fu Z, Wang Y, Wang H, Wang W, Zhang J, et al. Boron-doped mullite derived from single-phase gels. J Eur Ceram Soc. 2010;30:2435–41.

    Article  CAS  Google Scholar 

  55. Bonetto RD, Zalba PE, Conconi MS, Manassero M. The Rietveld method applied to quantitative phase analysis of minerals containing disordered structures. Rev Geol Chile. 2003;30:103–15.

    Article  CAS  Google Scholar 

  56. Hillier S. Accurate quantitative analysis of clay and other minerals in sandstones by XRD: comparison of a Rietveld and a reference intensity ratio (RIR) method and the importance of sample preparation. Clay Miner. 2000;35:291–302.

    Article  CAS  Google Scholar 

  57. Lee HK, Zerbetto S, Colombo P, Pantano CG. Glass-ceramics and composites containing aluminum borate whiskers. Ceram Int. 2010;36:1589–96.

    Article  CAS  Google Scholar 

  58. Lee WE, Souza GP, McConville CJ, Tarvornpanich T, Iqbal Y. Mullite formation in clays and clay-derived vitreous ceramics. J Eur Ceram Soc. 2008;28:465–71.

    Article  CAS  Google Scholar 

  59. Hernández MF, Suárez G, Baudin C, Pena Castro P, Aglietti EF, Rendtorff NM. Densification of lightweight aluminum borate ceramics by direct sintering of milled powders. J Asian Ceram Soc. 2018;6(4):374–83.

    Article  Google Scholar 

  60. Romero M, Pérez JM. Relation between the microstructure and technological properties of porcelain stoneware. A review. Mater Constr. 2015;65:e065.

    Article  CAS  Google Scholar 

  61. Bayca SU. Effects of the addition of ulexite to the sintering behavior of a ceramic body. J Ceram Process Res. 2009;10:162–6.

    Google Scholar 

Download references

Acknowledgements

MFH, MAV and MFS acknowledge CONICET for the fellowships. This work has been partially supported by Nano-Petro FONARSEC Project 2012 (ANPCyT). PICT-2016-1193 (2017–2020) (ANPCyT) and PIO CONICET-UNLA 2016–2018. Nro: 22420160100023CO (CONICET).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Hernández.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández, M.F., Violini, M.A., Serra, M.F. et al. Boric acid (H3BO3) as flux agent of clay-based ceramics, B2O3 effect in clay thermal behavior and resultant ceramics properties. J Therm Anal Calorim 139, 1717–1729 (2020). https://doi.org/10.1007/s10973-019-08563-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08563-4

Keywords

Navigation