Skip to main content
Log in

Effect of alkaline pretreatment on the thermal behavior and chemical properties of rice husk varieties in relation to activated carbon production

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal behavior and chemical properties of selected raw and NaOH-pretreated rice husk varieties were investigated. NaOH-pretreatment process involved soaking 5 g rice husk samples in 40 mL of 2%w/v NaOH, shaking (400 rpm) and heating (50 °C) for 3 h. NaOH-pretreated samples were water-washed, oven-dried, and milled for use in the determination of their thermal behavior and surface functional groups. Alkaline wash-water was also analyzed for sugar components. Thermal decomposition temperatures, degradation rates, and the subsequent mass losses varied from one rice husk variety to another. These thermal properties increased after NaOH-pretreatment of the rice husk varieties, reducing their char yields (17.1–20.4% db). These changes mainly had to do with the lignin, hemicellulose, and ash removal from the rice husk varieties, as confirmed by their FTIR analysis, as well as by the sugar composition analysis of their alkaline wash-water. Consequently, the FTIR spectra differed between the raw and NaOH-pretreated rice husk varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. González-García P. Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications. Renew Sustain Energy Rev. 2018;82:1393–414.

    Article  CAS  Google Scholar 

  2. Menya E, Olupot PW, Storz H, Lubwama M, Kiros Y. Characterization and alkaline pretreatment of rice husk varieties in Uganda for potential utilization as precursors in the production of activated carbon and other value-added products. Waste Manag. 2018;81:104–16.

    Article  CAS  PubMed  Google Scholar 

  3. Menya E, Olupot PW, Storz H, Lubwama M, Kiros Y. Production and performance of activated carbon from rice husks for removal of natural organic matter from water: a review. Chem Eng Res Des. 2018;129:271–96.

    Article  CAS  Google Scholar 

  4. Liou TH, Wu SJ. Characteristics of microporous/mesoporous carbons prepared from rice husk under base- and acid-treated conditions. J Hazard Mater. 2009;171:693–703.

    Article  CAS  PubMed  Google Scholar 

  5. Menya E, Olupot PW, Storz H, Lubwama M, Kiros Y, John MJ. Optimization of pyrolysis conditions for char production from rice husks and its characterization as a precursor for production of activated carbon. Biomass Convers Biorefinery 2019. https://doi.org/10.1007/s13399-019-00399-0.

    Article  Google Scholar 

  6. Deiana C, Granados D, Venturini R, Amaya A, Sergio M, Tancredi N. Activated carbons obtained from rice husk: influence of leaching on textural parameters. Ind Eng Chem Res. 2008;47:4754–7.

    Article  CAS  Google Scholar 

  7. Ahmadi F, Zamiri MJ, Khorvash M, Ziaee E, Polikarpov I. Pre-treatment of sugarcane bagasse with a combination of sodium hydroxide and lime for improving the ruminal degradability: optimization of process parameters using response surface methodology. J Appl Anim Res. 2016;44:287–96.

    Article  CAS  Google Scholar 

  8. García-Torreiro M, Pallín MÁ, López-Abelairas M, Lu-Chau TA, Lema JM. Alkali treatment of fungal pretreated wheat straw for bioethanol production. Bioethanol. 2016;2:32–43.

    Article  CAS  Google Scholar 

  9. Bazargan A, Gebreegziabher T, Hui C-W, McKay G. The effect of alkali treatment on rice husk moisture content and drying kinetics. Biomass Bioenergy. 2014;70:468–75.

    Article  CAS  Google Scholar 

  10. Ahiduzzaman M, Islam AKMS. Thermo-gravimetric and kinetic analysis of different varieties of rice husk. Procedia Eng. 2015;105:646–51.

    Article  Google Scholar 

  11. Carmona VB, Oliveira RM, Silva WTL, Mattoso LHC, Marconcini JM. Nanosilica from rice husk: extraction and characterization. Ind Crops Prod. 2013;43:291–6.

    Article  CAS  Google Scholar 

  12. Fauziah S, Draman S, Daik R, Latif FA, El-sheikh SM. Characterization and thermal decomposition kinetics of Kapok (Ceiba pentandra L.)—based cellulose. BioResources. 2014;9:8–23.

    Google Scholar 

  13. Cruz G, Santiago PA, Braz CEM, Seleghim P, Crnkovic PM. Investigation into the physical–chemical properties of chemically pretreated sugarcane bagasse. J Therm Anal Calorim. 2018;132:1039–53.

    Article  CAS  Google Scholar 

  14. Sambusiti C, Ficara E, Malpei F, Steyer JP, Carrère H. Effect of sodium hydroxide pretreatment on physical, chemical characteristics and methane production of five varieties of sorghum. Energy. 2013;55:449–56.

    Article  CAS  Google Scholar 

  15. Biagini E, Fantei A, Tognotti L. Effect of the heating rate on the devolatilization of biomass residues. Thermochim Acta. 2008;472:55–63.

    Article  CAS  Google Scholar 

  16. El-Sayed SA, Mostafa ME. Kinetic parameters determination of biomass pyrolysis fuels using TGA and DTA techniques. Waste Biomass Valoriz. 2015;6:401–15.

    Article  CAS  Google Scholar 

  17. Lemos MS, Yokoyama L, Viana MM, Dweck J. A study of coke and char formation during pyrolysis of rice husk. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08196-7.

    Article  Google Scholar 

  18. Zhang S, Dong Q, Zhang L, Xiong Y. Effects of water washing and torrefaction on the pyrolysis behavior and kinetics of rice husk through TGA and Py-GC/MS. Bioresour Technol. 2016;199:352–61.

    Article  CAS  PubMed  Google Scholar 

  19. Biswas B, Pandey N, Bisht Y, Singh R, Kumar J, Bhaskar T. Pyrolysis of agricultural biomass residues: comparative study of corn cob, wheat straw, rice straw and rice husk. Bioresour Technol. 2017;237:57–63.

    Article  CAS  PubMed  Google Scholar 

  20. Saikia R, Baruah B, Kalita D, Pant KK, Gogoi N, Kataki R. Pyrolysis and kinetic analyses of a perennial grass (Saccharum ravannae L.) from north-east India: optimization through response surface methodology and product characterization. Bioresour Technol. 2018;253:304–14.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang J, Zhang X, Li C, Zhang W, Zhang J, Zhang R, Yuan Q, Liu G, Cheng G. A comparative study of enzymatic hydrolysis and thermal degradation of corn stover: understanding biomass pretreatment. RSC Adv. 2015;5:36999–7005.

    Article  CAS  Google Scholar 

  22. Arora S, Kumar M, Dubey G. Thermal decomposition kinetics of rice husk: activation energy with dynamic thermogravimetric analysis. J Energy Inst. 2009;82:138–43.

    Article  CAS  Google Scholar 

  23. Quan C, Gao N, Song Q. Pyrolysis of biomass components in a TGA and a fixed-bed reactor: thermochemical behaviors, kinetics, and product characterization. J Anal Appl Pyrolysis. 2016;121:84–92.

    Article  CAS  Google Scholar 

  24. Wang P, Zhang J, Shao Q, Wang G. Physicochemical properties evolution of chars from palm kernel shell pyrolysis. J Therm Anal Calorim. 2018;133:1271–80.

    Article  CAS  Google Scholar 

  25. Shen DK, Gu S, Luo KH, Bridgwater AV, Fang MX. Kinetic study on thermal decomposition of woods in oxidative environment. Fuel. 2009;88:1024–30.

    Article  CAS  Google Scholar 

  26. Wei J, Meyer C. Degradation of natural fiber in ternary blended cement composites containing metakaolin and montmorillonite. Corros Sci. 2017;120:42–60.

    Article  CAS  Google Scholar 

  27. Yao F, Wu Q, Lei Y, Guo W, Xu Y. Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym Degrad Stab. 2008;93:90–8.

    Article  CAS  Google Scholar 

  28. Vamvuka D, Kakaras E, Kastanaki E, Grammelis P. Pyrolysis characteristics and kinetics of biomass residuals mixtures with lignite. In: Fuel, 2003. p. 1949–60.

    Article  CAS  Google Scholar 

  29. Onsree T, Tippayawong N, Zheng A, Li H. Pyrolysis behavior and kinetics of corn residue pellets and eucalyptus wood chips in a macro thermogravimetric analyzer. Case Stud Therm Eng. 2018;12:546–56.

    Article  Google Scholar 

  30. McNamee P, Darvell LI, Jones JM, Williams A. The combustion characteristics of high-heating-rate chars from untreated and torrefied biomass fuels. Biomass Bioenergy. 2015;82:63–72.

    Article  CAS  Google Scholar 

  31. Wang T, Yin J, Liu Y, Lu Q, Zheng Z. Effects of chemical inhomogeneity on pyrolysis behaviors of corn stalk fractions. Fuel. 2014;129:111–5.

    Article  CAS  Google Scholar 

  32. Luo Q, Peng H, Zhou M, Lin D, Ruan R, Wan Y, Zhang J, Liu Y. Alkali extraction and physicochemical characterization of hemicelluloses from young bamboo (phyllostachs pubescens mazel). BioResources. 2012;7:5817–28.

    Article  Google Scholar 

  33. Eom IY, Kim JY, Kim TS, Lee SM, Choi D, Choi IG, Choi JW. Effect of essential inorganic metals on primary thermal degradation of lignocellulosic biomass. Bioresour Technol. 2012;104:687–94.

    Article  CAS  PubMed  Google Scholar 

  34. Trubetskaya A, Jensen PA, Jensen AD, Steibel M, Spliethoff H, Glarborg P. Influence of fast pyrolysis conditions on yield and structural transformation of biomass chars. Fuel Process Technol. 2015;140:205–14.

    Article  CAS  Google Scholar 

  35. Shariff A, Aziz NSM, Abdullah N. Slow pyrolysis of oil palm empty fruit bunches for biochar production and characterization. J Phys Sci. 2014;25:97–112.

    CAS  Google Scholar 

  36. Ndazi BS, Nyahumwa C, Tesha J. Chemical and thermal stability of rice husks against alkali treatment. BioResources. 2008;3:1267–77.

    CAS  Google Scholar 

  37. Gu S, Zhou J, Luo Z, Wang Q, Shi Z. Kinetic study on the preparation of silica from rice husk under various pretreatments. J Therm Anal Calorim. 2015;119:2159–69.

    Article  CAS  Google Scholar 

  38. Kizito S, Wu S, Kipkemoi Kirui W, Lei M, Lu Q, Bah H, Dong R. Evaluation of slow pyrolyzed wood and rice husks biochar for adsorption of ammonium nitrogen from piggery manure anaerobic digestate slurry. Sci Total Environ. 2005;505:102–12.

    Article  CAS  Google Scholar 

  39. Zhang W, Lin N, Liu D, Xu J, Sha J, Yin J, Tan X, Yang H, Lu H, Lin H. Direct carbonization of rice husk to prepare porous carbon for supercapacitor applications. Energy. 2017;128:618–25.

    Article  CAS  Google Scholar 

  40. Zulkiple N, Maskat MY, Hassan O. Pretreatment of oil palm empty fruit fiber (OPEFB) with aquaeous ammonia for high production of sugar. Procedia Chem. 2016;18:155–61.

    Article  CAS  Google Scholar 

  41. Subhedar PB, Gogate PR. Alkaline and ultrasound assisted alkaline pretreatment for intensification of delignification process from sustainable raw-material. Ultrason Sonochem. 2014;21:216–25.

    Article  CAS  PubMed  Google Scholar 

  42. Asghar U, Irfan M, Iram M, Huma Z, Nelofer R, Nadeem M, Syed Q. Effect of alkaline pretreatment on delignification of wheat straw. Nat Prod Res. 2015;29:125–31.

    Article  CAS  PubMed  Google Scholar 

  43. He Y, Pang Y, Liu Y, Li X, Wang K. Physicochemical characterization of rice straw pretreated with sodium hydroxide in the solid state for enhancing biogas production. Energy Fuels. 2008;22:2775–81.

    Article  CAS  Google Scholar 

  44. Kumar R, Mago G, Balan V, Wyman CE. Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Bioresour Technol. 2009;100:3948–62.

    Article  CAS  PubMed  Google Scholar 

  45. Lim WC, Srinivasakannan C, Al Shoaibi A. Cleaner production of porous carbon from palm shells through recovery and reuse of phosphoric acid. J Clean Prod. 2014;102:501–11.

    Article  CAS  Google Scholar 

  46. Chandel AK, Antunes FFA, Anjos V, Bell MJV, Rodrigues LN, Singh OV, Rosa CA, Pagnocca FC, da Silva SS. Ultra-structural mapping of sugarcane bagasse after oxalic acid fiber expansion (OAFEX) and ethanol production by Candida shehatae and Saccharomyces cerevisiae. Biotechnol Biofuels. 2013;6:4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Abnisa F, Wan Daud WMA, Sahu JN. Optimization and characterization studies on bio-oil production from palm shell by pyrolysis using response surface methodology. Biomass Bioenergy. 2011;35:3604–16.

    Article  CAS  Google Scholar 

  48. Barlianti V, Dahnum D, Hendarsyah H, Abimanyu H. Effect of alkaline pretreatment on properties of lignocellulosic oil palm waste. Procedia Chem. 2015;16:195–201.

    Article  CAS  Google Scholar 

  49. Liou TH. Development of mesoporous structure and high adsorption capacity of biomass-based activated carbon by phosphoric acid and zinc chloride activation. Chem Eng J. 2010;158:129–42.

    Article  CAS  Google Scholar 

  50. Zhu Z, Rezende CA, Simister R, McQueen-Mason SJ, Macquarrie DJ, Polikarpov I, Gomez LD. Efficient sugar production from sugarcane bagasse by microwave assisted acid and alkali pretreatment. Biomass Bioenergy. 2016;93:269–78.

    Article  CAS  Google Scholar 

  51. Bakar RA, Yahya R, Gan SN. Production of high purity amorphous silica from rice husk. Procedia Chem. 2016;19:189–95.

    Article  CAS  Google Scholar 

  52. Luo J, Zhou Y, Milner ST, Pantano CG, Kim SH. Molecular dynamics study of correlations between IR peak position and bond parameters of silica and silicate glasses: effects of temperature and stress. J Am Ceram Soc. 2018;101:178–88.

    Article  CAS  Google Scholar 

  53. Mathur L, Saddam Hossain SK, Majhi MR, Roy PK. Synthesis of nano-crystalline forsterite (Mg2SiO4) powder from biomass rice husk silica by solid-state route. Bol la Soc Esp Ceram y Vidr. 2018;57:112–8.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge funding from the Volkswagen Foundation under its “Postdoctoral Fellowships programme for African Researchers in the Engineering Sciences (Grant 90014).” Technical support from Ms. Evgenia Tryastsina and Mr. Laslo Eidt at the Thuenen Institute of Agricultural Technology, Braunschweig is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Menya.

Ethics declarations

Conflict of interest

There is no conflict of interest among the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menya, E., Olupot, P.W., Storz, H. et al. Effect of alkaline pretreatment on the thermal behavior and chemical properties of rice husk varieties in relation to activated carbon production. J Therm Anal Calorim 139, 1681–1691 (2020). https://doi.org/10.1007/s10973-019-08553-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08553-6

Keywords

Navigation