Skip to main content
Log in

Non-isothermal pyrolysis of grape marc

Thermal behavior, kinetics and evolved gas analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The non-isothermal decomposition behavior of grape marc (GM) residues from wine industry was investigated by using different thermal analysis techniques, including: (1) thermogravimetric analysis/differential thermogravimetry (TGA-DTG) to study the thermal decomposition kinetics; (2) thermogravimetry (TG-DTG) coupled with Fourier transform infrared spectroscopy (FTIR) to investigate the nature of the gas-phase products released during the pyrolytic breakdown; and (3) simultaneous thermogravimetry/differential scanning calorimetry (TGA–DSC) analysis to obtain information on the heat flows associated with the thermal decomposition of grape marc. Thermogravimetric measurements at five different heating rates (i.e., 2.5, 5, 10, 20, 40 K min−1) were performed for the kinetic computations, which were carried out by adopting a “model-free” approach based on the application of isoconversional methods. In more details, two different integral methods, i.e., the linear Ozawa–Flynn–Wall (OFW) method and the nonlinear Vyazovkin incremental method, were comparatively used in order to obtain a set of kinetic parameters useful for the conceptual design of thermochemical processes involving grape marc. The reliability of the obtained parameters was confirmed by the successful application of the same data to reproduce experimental TG curves not included in the kinetic computations. The effect of the heating rate on the nature of the gas-phase products arising from grape marc decomposition as well as on the heat flows associated with the pyrolytic process was also investigated. Finally, the study was complemented with an extensive investigation on chemical and physical properties of grape marc residues (i.e., ultimate analysis, proximate analysis, calorific values determination, FTIR analysis and cellulose, hemicellulose and lignin content determination), which provides useful input data for modeling grape march conversion processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hussain M, Cholette S, Castaldi RM. J Global Market. 2008;21:33–47.

    Google Scholar 

  2. Mattsson B, Sonesson U. Environmentally-friendly food processing. 1st ed. Cambridge: Woodhead Publishing; 2003.

    Google Scholar 

  3. Amico V, Napoli EM, Renda A, Ruberto G, Spatafora C, Tringali C. Food Chem. 2004;88:599–607.

    CAS  Google Scholar 

  4. Galanakis CM. Handbook of grape processing by-products: sustainable solutions. London: Academic Press; 2017.

    Google Scholar 

  5. Singh-Nee NP, Pandey A. Biotechnology for agro-industrial residues utilization. Dordrecht: Springer; 2009.

    Google Scholar 

  6. Baumgartel T, Kluth H, Epperlein K, Rodehutscord M. Small Rumin Res. 2007;67:302–6.

    Google Scholar 

  7. Schieber A, Stintzing FC, Carle R. Trends Food Sci Technol. 2001;12:401–13.

    CAS  Google Scholar 

  8. Hang YD, Lee CY, Woodams EE. Biotechnol Lett. 1986;8(53-5):6.

    Google Scholar 

  9. Hang YD, Woodams EE. Biotechnol Lett. 1985;7:253–4.

    CAS  Google Scholar 

  10. Negro C, Tommasi L, Miceli L. Bioresour Technol. 2003;87:41–4.

    CAS  PubMed  Google Scholar 

  11. Llobera A, Cañellas J. Food Chem. 2007;101:659–66.

    CAS  Google Scholar 

  12. Basso D, Patuzzi F, Castello D, Baratieri M, Rada EC, Weiss-Hortala E, Fiori L. Waste Manage. 2016;47:114–21.

    CAS  Google Scholar 

  13. Petrović N, Perišić JD, Maksimović V, Maksimović M, Kragović M, Stojanović M, Lauševil M, Mihajlovi M. J Anal Appl Pyrol. 2016;118:267–77.

    Google Scholar 

  14. Lapuerta M, Hernández JJ, Pazo A, López J. Fuel Process Technol. 2008;89:828–37.

    CAS  Google Scholar 

  15. Miranda MT, Arranz JI, Román S, Rojas S, Montero I, López M, Cruz JA. Fuel Process Technol. 2011;92:278–83.

    CAS  Google Scholar 

  16. Miranda T, Román S, Montero I, Nogales-Delgado S, Arranz JI, Rojas CV, González JF. Fuel Process Technol. 2012;103:160–5.

    CAS  Google Scholar 

  17. Casazza AA, Aliakbarian B, Lagazzo A, Garbarino G, Carnasciali MM, Perego P, Busca G. Fuel Process Technol. 2016;153:121–8.

    CAS  Google Scholar 

  18. Botelhoa T, Costa M, Wilk M, Magdziarz A. Fuel. 2018;212:95–100.

    Google Scholar 

  19. Junges J, Carvalho Collazzo G, Perondi D, et al. Therm Anal Calorim. 2018;134:2329–38.

    CAS  Google Scholar 

  20. dos Reis Ferreira RA, da Silva Meireles C, Assunção RMN, et al. J Therm Anal Calorim. 2018;132:1535–44.

    Google Scholar 

  21. Brachi P, Miccio F, Miccio M, Ruoppolo G. Fuel Process Technol. 2015;130:147–54.

    CAS  Google Scholar 

  22. Brachi P, Miccio F, Miccio M, Ruoppolo G. Fuel Process Technol. 2016;154:243–50.

    CAS  Google Scholar 

  23. Adiletta G, Brachi P, Riianova E. et al. Waste Biomass Valor. (2019). In press. https://doi.org/10.1007/s12649-019-00582-4.

  24. Vyazovkin S, Sbirrazzuoli N. Macromol Rapid Commun. 2006;27:1515–32.

    CAS  Google Scholar 

  25. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. Thermochim Acta. 2011;520:1–19.

    CAS  Google Scholar 

  26. Ozawa T. B Chem Soc Jpn. 1965;38:1881–6.

    CAS  Google Scholar 

  27. Trache D, Abdelaziz A, Siouani B. J Therm Anal Calorim. 2017;128:335–48.

    CAS  Google Scholar 

  28. Zhao H, Yan H, Dong S, Zhang Y, Sun B, Zhang C, Qin S. J Therm Anal Calorim. 2013;111:1685–90.

    CAS  Google Scholar 

  29. Han Z, Zhuang D, Yan H, Zhao H, Sun B, Li D, Sun Y, Hu W, et al. J Therm Anal Calorim. 2017;127:1371–9.

    CAS  Google Scholar 

  30. Zhao H, Yan H, Zhang C, et al. J Therm Anal Calorim. 2012;110:611–7.

    CAS  Google Scholar 

  31. Lwin Y. Int J Eng Educ. 2000;16:335–9.

    Google Scholar 

  32. Viazovkyn S. Int J Chem Kinet. 1996;28:95–101.

    Google Scholar 

  33. Hyndmana RJ, Koehler AB. Int J Forecast. 2006;22:679–88.

    Google Scholar 

  34. Pouchert JC. The Aldrich Library of FT-IR. 1st ed. Milwaukee: Aldrich Chemical Company Inc; 1989.

    Google Scholar 

  35. Zapata B, Balmaseda J, Fregoso-Israel E, Torres-Garcia E. J Therm Anal Calorim. 2009;98:309–15.

    CAS  Google Scholar 

  36. Brachi P, Riianova E, Miccio M, Miccio F, Ruoppolo G, Chirone R. Energy Fuels. 2017;31:9595–604.

    CAS  Google Scholar 

  37. Bellamy LJ. The infrared spectra of complex molecules. London: Methuen & Co LTD; 1959.

    Google Scholar 

  38. Xiong F, Han Y, Wang S, Li G, Qin T, Chen Y, Chu F. ACS Sustain Chem Eng. 2017;5:2273–81.

    CAS  Google Scholar 

  39. Badot PM, Crini G. Sorption processes and pollution: conventional and non-conventional sorbents for pollutant removal from wastewaters. Besançon: Presses Universitaires de Franche-Comté; 2010.

    Google Scholar 

  40. Kacurakova M, Capek P, Sasinkova V, Wellner N, Ebringerova A. Carbohydr Polym. 2000;43:195–203.

    CAS  Google Scholar 

  41. Jin AX, Ren JL, Peng F, Xu F, Zhou GY, Sun RC, Kennedy JF. Carbohydr Polym. 2009;78:609–19.

    CAS  Google Scholar 

  42. Arenillas A, Pevida C, Rubiera F, Garcıa R, Pis J. J Anal Appl Pyrol. 2004;71:747–63.

    CAS  Google Scholar 

  43. Galano A, Aburto J, Sadhukhan J, Torres-García E. J Anal Appl Pyrol. 2017;128:208–16.

    CAS  Google Scholar 

  44. Lopez-Velazquez MA, Santes V, Balmaseda J, Torres-Garcia E. J Anal Appl Pyrol. 2013;99:170–7.

    CAS  Google Scholar 

  45. Tumuluru JS, Sokhansanj S, Hess JR, Wright CT, Boardman R. Ind Biotechnol. 2011;7:384–401.

    Google Scholar 

  46. Chen WH, Peng J, Bi XT. Renew Sustain Energy Rev. 2015;44:847–66.

    CAS  Google Scholar 

  47. Heydari M, Rahman M, Gupta R. Int J Chem Eng. 2015;2015:1–9.

    Google Scholar 

  48. Aburto J, Moran M, Galano A, Torres-García E. J Anal Appl Pyrol. 2015;11:94–104.

    Google Scholar 

  49. Miranda R, Bustos-Martinez D, Sosa Blanco C, Gutièrrez Villarreal MH, Rodrigues Cantù ME. J Anal Appl Pyrol. 2009;86:245–51.

    CAS  Google Scholar 

  50. Leng Y. Material characterization: introduction to microscopic and spectroscopic methods. Singapore: John Wiley & Sons (Asia) Pte Ltd; 2008.

    Google Scholar 

  51. Yang H, Yan R, Chen H, Ho Lee D, Zheng C. Fuel. 2007;86:1781–8.

    CAS  Google Scholar 

  52. Milosavljevic I, Oja V, Suuberg EM. Ind Eng Chem Res. 1996;35:653–62.

    CAS  Google Scholar 

  53. Mok WSL, Antal MJ Jr. Thermochim Acta. 1983;68:165–86.

    CAS  Google Scholar 

  54. Cho J, Davis JM, Huber GW. Chemsuschem. 2010;3:1162–5.

    CAS  PubMed  Google Scholar 

  55. Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds. 5th ed. Hoboken: Wiley; 1997.

    Google Scholar 

  56. Yeo JY, Chin BLF, Tan JK, Loh YS. J Energy Inst. (2017) In press. https://doi.org/10.1016/j.joei.2017.12.003.

    CAS  Google Scholar 

  57. Mohan M, Gupta NK, Kumar M. Inorg Chim Acta. 1992;197:39–46.

    CAS  Google Scholar 

  58. Cervantes-Uc JM, Cauich-Rodríguez JV, Vázquez-Torres H, Garfias Mesías LF, Paul DR. Thermochim Acta. 2007;457:92–102.

    CAS  Google Scholar 

  59. Brachi P, Chirone R, Miccio F, Miccio M, Picarelli A, Ruoppolo G. Fuel. 2015;128:88–98.

    Google Scholar 

  60. Kalogiannis KG, Stefanidis SD, Michailof CM, Lappas AA, Sjöholm E. J Anal Appl Pyrol. 2015;115:410–8.

    CAS  Google Scholar 

  61. Kacurakova M, Capek P, Sasinkova V, Wellner N, Ebringerova A. Carbohydr Polym. 2000;43:195–203.

    CAS  Google Scholar 

  62. Grigiante M, Brighenti M, Antolini D. Renew Energy. 2016;99:1318–26.

    Google Scholar 

  63. Grigiante M, Brighenti M, Antolini D. J Therm Anal Calorim. 2017;129:553–65.

    CAS  Google Scholar 

  64. Dong Z, Cai J. J Energy Inst. 2018;91:513–8.

    CAS  Google Scholar 

  65. Chen T, Cai J, Liu R. Sour Recovery Util Environ Eff. 2015;37:2208–17.

    CAS  Google Scholar 

  66. Sharara M, Sadaka S. J Sustain Bioenergy Syst. 2014;4:75–86.

    Google Scholar 

  67. Slopiecka K, Bartocci P, Fantozzi F. Appl Energy. 2012;97:491–7.

    CAS  Google Scholar 

  68. Mamleev V, Bourbigot S, Le Bras M, Yvon J, Lefebvre J. Chem Eng Sci. 2006;61:1276–92.

    CAS  Google Scholar 

  69. Aboyade AO, Hugo TJ, Carrier M, Meyer EL, Stahl R, Knoetze JH, Görgens JF. Thermochim Acta. 2011;517:81–9.

    CAS  Google Scholar 

  70. Cai J, Xu D, Dong Z, Yu X, Yang Y, Banks SW, Bridgwater AW. Renew Sustain Energy Rev. 2017;82:2705–15.

    Google Scholar 

  71. Carrier M, Auret L, Bridgwater A, Knoetze JH. Energy Fuel. 2016;30:7834–41.

    CAS  Google Scholar 

  72. Hache F, Delichatsios M, Fateh T, Zhang J. J Fire Sci. 2015;33:232–46.

    CAS  Google Scholar 

  73. Šimon P. J Therm Anal Calorim. 2004;76:123–32.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Brachi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres-Garcia, E., Brachi, P. Non-isothermal pyrolysis of grape marc. J Therm Anal Calorim 139, 1463–1478 (2020). https://doi.org/10.1007/s10973-019-08530-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08530-z

Keywords

Navigation