Skip to main content
Log in

Constant rate thermal analysis of cobaltoblödite and cupper–kröhnkite at low water vapor pressure 5 hPa

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal decomposition mechanisms for cobaltoblödite Na2Co(SO4)2·4H2O and cupper–kröhnkite Na2Cu(SO4)2·2H2O have been developed using constant rate thermal analysis technique under controlled residual water vapor pressure above the sample \( P_{{{\text{H}}_{2} {\text{O}}}} = \, 5\;{\text{hPa}} \). The apparent activation energy of each dehydration process was measured by means of two CRTA curves without any presumption to the kinetic low. Correlation between structure and thermal behavior was highlighted. It has shown that dehydration of cobaltoblödite mineral occurs in two steps with formation of Na2Co(SO4)2·1.5H2O and Na2Co(SO4)2 as intermediate and final phases, respectively. The activation energies of both dehydration steps are 167 kJ mol−1 and 107 kJ mol−1, respectively. For cupper–kröhnkite mineral, its dehydration occurs in one step leading to Na2Cu(SO4)2. The corresponding activation energy was found equal to 71 kJ mol−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hoffmann SK, Goslar J, Hilczer W, Augustyniak-Jabłokow MA. Electron spin relaxation of vibronic Cu(H2O)6 complexes in K2Zn(SO4)2·6H2O single crystals. J Phys Condens Matter. 2001;13:707–18.

    Article  CAS  Google Scholar 

  2. Mills SJ, Hatert F, Nickel EH, Ferraris G. The standardisation of mineral group hierarchies: application to recent nomenclature proposals. Eur J Mineral. 2009;21:1073–80.

    Article  CAS  Google Scholar 

  3. Palache C, Warren CH. Krohnkite, natrochalcite (a new mineral), and other sulphates from Chile. Am J Sci. 1908;154:342–8.

    Article  Google Scholar 

  4. Souamti A, Martín IR, Zayani L, Hernández-Rodríguez MA, Soler-Carracedo K, Lozano-Gorrín AD, Chehimi DBH. Blue up-conversion emission of Yb3+-doped langbeinite salts. Opt Mater. 2016;53:190–4.

    Article  CAS  Google Scholar 

  5. Souamti A, Martín IR, Zayani L, Hernández-Rodríguez MA, Soler-Carracedo K, Lozano-Gorrín AD, Lalla E, Chehimi DBH. Synthesis, characterization and spectroscopic properties of a new Nd3+-doped Co-picromerite-type Tutton salt. J Lumin. 2016;177:93–8.

    Article  CAS  Google Scholar 

  6. Souemti A, Lozano-Gorrín AD, Zayani L, Essayes SA, Abbassi M, Lalla E, Pérez-Rodríguez C, Chehimi DBH. Synthesis, characterization and electrical properties of both pure and cobalt-doped picromerite-type hydrated double salt K2Mg1−xCox(SO4)2·6H2O (x = 0, 0.4). J Electron Mater. 2016;45:4418–24.

    Article  CAS  Google Scholar 

  7. Souamti A, Martín IR, Zayani L, Lozano-Gorrín AD, Chehimi DBH. Luminescence properties of Pr3+ ion doped Mg-picromerite Tutton salt. J Lumin. 2017;188:148–53.

    Article  CAS  Google Scholar 

  8. Béjaoui O, Zayani L, Chehimi DBH. Synthesis and thermal behaviour of Na2SO4·MgSO4·4H2O. J Therm Anal Calorim. 2016;123:1205–11.

    Article  CAS  Google Scholar 

  9. Reynaud M, Ati M, Boulineau S, Sougrati MT, Melot BC, Rousse G, Chotard JN, Tarascon JM. Bimetallic sulfates A2M(SO4)2·nH2O (A = Li, Na and M = transition metal): as new attractive electrode materials for Li-and Na-ion batteries. ECS Trans. 2013;50:11–9.

    Article  CAS  Google Scholar 

  10. Van Tiggelen PJ. Détermination Par Résonance Magnétique Nucléaire de la Position des Atomes d’Hydrogène dans la Kröhnkite. Bull Soc Chim Belg. 1966;75:620–40.

    Article  Google Scholar 

  11. Hawthorne FC, Ferguson RB. Refinement of the crystal structure of kröhnkite. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem. 1975;31:1753–5.

    Article  Google Scholar 

  12. Kasatkin AV, Nestola F, Plášil J, Marty J, Belakovskiy DI, Agakhanov AA, Mills SJ, Pedron D, Lanza A, Favaro M, Bianchin S, Lykova IS, Goliáš V, Birch WD. Manganoblödite, Na2Mn(SO4)2·4H2O and cobaltoblödite Na2Co(SO4)2·4H2O: two new members of the blödite group from the Blue Lizard mine, San Juan County, Utah, USA. Mineral Mag. 2013;77:367–83.

    Article  CAS  Google Scholar 

  13. Stoilova D, Wildner M. Blödite-type compounds Na2Me(SO4)2·4H2O (Me = Mg Co, Ni, Zn): crystal structures and hydrogen bonding systems. J Mol Struct. 2004;706:57–63.

    Article  CAS  Google Scholar 

  14. Sarma CRN, Satyanandam G, Murthy PG, Haranadh C. EPR investigation of krohnkite, Na2Cu(SO4)2·2H2O. J Phys C Solid State Phys. 1976;9:841–7.

    Article  CAS  Google Scholar 

  15. Rouquerol J. Controlled transformation rate thermal analysis: the hidden face of thermal analysis. Thermochim Acta. 1989;144:209–24.

    Article  CAS  Google Scholar 

  16. Rouquerol J, Bordère S, Rouquerol F. Controlled rate evolved gas analysis: recent experimental set-up and typical results. Thermochim Acta. 1992;203:193–202.

    Article  CAS  Google Scholar 

  17. Rouquerol J. A general introduction to SCTA and to rate-controlled SCTA. J Therm Anal Calorim. 2003;72:1081–6.

    Article  CAS  Google Scholar 

  18. Vágvölgyi V, Daniel L, Pinto C, Kristóf J, Frost R, Horváth E. Dynamic and controlled rate thermal analysis of attapulgite. J Therm Anal Calorim. 2008;92:589–94.

    Article  Google Scholar 

  19. Vágvölgyi V, Frost R, Hales M, Locke A, Kristóf J, Horváth E. Controlled rate thermal analysis of hydromagnesite. J Therm Anal Calorim. 2008;92:893–7.

    Article  Google Scholar 

  20. Vágvölgyi V, Hales M, Martens W, Kristóf J, Horváth E, Frost RL. Dynamic and controlled rate thermal analysis of hydrozincite and smithsonite. J Therm Anal Calorim. 2008;92:911–6.

    Article  Google Scholar 

  21. Nahdi K, Rouquerol F, Ayadi MT. Mg(OH)2 dehydroxylation: a kinetic study by controlled rate thermal analysis (CRTA). Solid State Sci. 2009;11:1028–34.

    Article  CAS  Google Scholar 

  22. Nahdi K, Ferid M, Ayadi MT. Thermal dehydration of CeP3O9·3H2O by controlled rate thermal analysis. J Therm Anal Calorim. 2009;96:455–61.

    Article  CAS  Google Scholar 

  23. Nahdi K, Ferid M, Ayadi MT. Chemical preparation and thermal behavior of neodymium cyclotriphosphate pentahydrate NdP3O9·5H2O: a study by controlled rate thermal analysis (CRTA). Thermochim Acta. 2009;487:54–9.

    Article  CAS  Google Scholar 

  24. Dhandapani M, Thyagu L, Prakash PA, Amirthaganesan G, Kandhaswamy MA, Srinivasan V. Synthesis and characterization of potassium magnesium sulphate hexahydrate crystals. Cryst Res Technol. 2006;41:328–31.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding was provided by Ministry of Higher Education and Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olfa Bejaoui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bejaoui, O., Zayani, L. & Chehimi, D.B.H. Constant rate thermal analysis of cobaltoblödite and cupper–kröhnkite at low water vapor pressure 5 hPa. J Therm Anal Calorim 137, 25–31 (2019). https://doi.org/10.1007/s10973-018-7921-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7921-4

Keywords

Navigation