Skip to main content
Log in

Critical analysis of non-isothermal kinetics of poultry litter pyrolysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Poultry litter is a waste from poultry industry that has been used for bioenergy generation and has high potential as feedstock for thermochemical processes, as pyrolysis. Kinetic parameters of poultry litter pyrolysis are paramount for techno-economic analysis of commercial scale processes. Scientific community has shown concern about the suitable application of different methods (model-free/model-fitting) for the determination of kinetic parameters. The application of an unsuitable method may lead to unreliable kinetic parameters. In this study, the performance of model-free methods for the determination of the kinetic parameters of poultry litter pyrolysis was evaluated. The characterization was performed through thermogravimetric analysis. Were applied the methods of Kissinger–Akahira–Sunose, Flynn–Wall–Ozawa and Vyazovkin. The model-free methods were not adequate to describe the kinetics of poultry litter pyrolysis throughout the whole reaction. Therefore, a model-based (five pseudo-components model) method was applied to obtain the kinetic parameters of poultry litter pyrolysis. Such model provided an adequate fit to the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Font-Palma C. Characterisation, kinetics and modelling of gasification of poultry manure and litter: an overview. Energy Convers Manag (Internet). 2012;53:92–8. https://doi.org/10.1016/j.enconman.2011.08.017.

    Article  CAS  Google Scholar 

  2. Bolan NS, Szogi AA, Chuasavathi T, Seshadri B, Rothrock MJ, Panneerselvam P. Uses and management of poultry litter. Worlds Poult Sci J (Internet). 2010;66:673–98. http://www.journals.cambridge.org/abstract_S0043933910000656.

    Article  Google Scholar 

  3. Collazzo GC, Broetto CC, Perondi D, Junges J, Dettmer A, Dornelles Filho AA, et al. A detailed non-isothermal kinetic study of elephant grass pyrolysis from different models. Appl Therm Eng (Internet). 2017;110:1200–11. https://doi.org/10.1016/j.applthermaleng.2016.09.012.

    Article  CAS  Google Scholar 

  4. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta (Internet). 2011 [cited 2014 Jul 11];520:1–19. http://linkinghub.elsevier.com/retrieve/pii/S0040603111002152.

  5. Wang S, Dai G, Yang H, Luo Z. Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Prog Energy Combust Sci (Internet). 2017;62:33–86. https://doi.org/10.1016/j.pecs.2017.05.004.

    Article  Google Scholar 

  6. Papari S, Hawboldt K. A review on the pyrolysis of woody biomass to bio-oil: focus on kinetic models. Renew Sustain Energy Rev (Internet). 2015;52:1580–95. https://doi.org/10.1016/j.rser.2015.07.191.

    Article  CAS  Google Scholar 

  7. Vyazovkin S, Chrissafis K, Di Lorenzo ML, Koga N, Pijolat M, Roduit B, et al. ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta. 2014;590:1–23.

    Article  CAS  Google Scholar 

  8. Rueda-Ordónez YJ, Tannous K, Olivares-Gómez E. An empirical model to obtain the kinetic parameters of lignocellulosic biomass pyrolysis in an independent parallel reactions scheme. Fuel Process Technol (Internet). 2015;140:222–30. https://doi.org/10.1016/j.fuproc.2015.09.001.

    Article  CAS  Google Scholar 

  9. Chen C, Miao W, Zhou C, Wu H. Thermogravimetric pyrolysis kinetics of bamboo waste via asymmetric double sigmoidal (Asym2sig) function deconvolution. Bioresour Technol (Internet). 2017;225:48–57. https://doi.org/10.1016/j.biortech.2016.11.013.

    Article  CAS  Google Scholar 

  10. Kameno N, Yamada S, Amimoto T, Amimoto K, Ikeda H, Koga N. Thermal degradation of poly(lactic acid) oligomer: reaction mechanism and multistep kinetic behavior. Polym Degrad Stab (Internet). 2016;134:284–95. https://doi.org/10.1016/j.polymdegradstab.2016.10.018.

    Article  CAS  Google Scholar 

  11. Oladokun O, Ahmad A, Abdullah TAT, Nyakuma BB, Bello AAH, Al-Shatri AH. Multicomponent devolatilization kinetics and thermal conversion of Imperata cylindrica. Appl Therm Eng (Internet). 2016;105:931–40. https://doi.org/10.1016/j.applthermaleng.2016.04.165.

    Article  CAS  Google Scholar 

  12. Brachi P, Miccio F, Miccio M, Ruoppolo G. Pseudo-component thermal decomposition kinetics of tomato peels via isoconversional methods. Fuel Process Technol (Internet). 2016;154:243–50. https://doi.org/10.1016/j.fuproc.2016.09.001.

    Article  CAS  Google Scholar 

  13. Bui HH, Tran KQ, Chen WH. Pyrolysis of microalgae residues—a kinetic study. Bioresour Technol (Internet). 2015;199:362–6. https://doi.org/10.1016/j.biortech.2015.08.069.

    Article  CAS  Google Scholar 

  14. Yurdakul S. Determination of co-combustion properties and thermal kinetics of poultry litter/coal blends using thermogravimetry. Renew Energy (Internet). 2016;89:215–23. https://doi.org/10.1016/j.renene.2015.12.034.

    Article  CAS  Google Scholar 

  15. Perondi D, Poletto P, Restelatto D, Manera C, Silva JP, Junges J, et al. Steam gasification of poultry litter biochar for bio-syngas production. Process Saf Environ Prot (Internet). Institution of Chemical Engineers; 2017;109:478–88. http://linkinghub.elsevier.com/retrieve/pii/S0957582017301465.

    Article  CAS  Google Scholar 

  16. Brachi P, Miccio F, Miccio M, Ruoppolo G. Isoconversional kinetic analysis of olive pomace decomposition under torrefaction operating conditions. Fuel Process Technol (Internet). 2015;130:147–54. https://doi.org/10.1016/j.fuproc.2014.09.043.

    Article  CAS  Google Scholar 

  17. Tran K, Bui H, Chen W. Distributed activation energy modelling for thermal decomposition of microalgae residues. Chem Eng Trans. 2016;50:175–80.

    Google Scholar 

  18. Bianchi O, Castel CD, de Oliveira RVB, Bertuoli PT, Hillig É. Nonisothermal degradation of wood using thermogravimetric measurements. Polímeros. 2010;20:395–400.

    Article  CAS  Google Scholar 

  19. Yao F, Wu Q, Lei Y, Guo W, Xu Y. Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym Degrad Stab (Internet). 2008 [cited 2014 Sep 23];93:90–8. http://linkinghub.elsevier.com/retrieve/pii/S0141391007003217.

    Article  CAS  Google Scholar 

  20. Vyazovkin S. An approach to the solution of the inverse kinetic problem in the case of complex processes. Thermochim Acta. 1993;223:201–6.

    Article  CAS  Google Scholar 

  21. Ornaghi HL, Poletto M, Zattera AJ, Amico SC. Correlation of the thermal stability and the decomposition kinetics of six different vegetal fibers. Cellulose. 2014;21:177–88.

    Article  CAS  Google Scholar 

  22. Wang J, Zhao H. Error evaluation on pyrolysis kinetics of sawdust using iso-conversional methods. J Therm Anal Calorim. 2016;124:1635–40.

    Article  CAS  Google Scholar 

  23. Kim SS, Agblevor FA. Pyrolysis characteristics and kinetics of chicken litter. Waste Manag. 2007;27:135–40.

    Article  Google Scholar 

  24. Poletto M, Dettenborn J, Pistor V, Zeni M, Zattera AJ. Materials produced from plant biomass. Part I : evaluation of thermal stability and pyrolysis of wood 3. Results and discussion. Mater Res. 2010;13:375–9.

    Article  CAS  Google Scholar 

  25. Zhang X, Xu M, Sun R, Sun L. Study on biomass pyrolysis kinetics. Proc GT2005 (Internet). 2005;ASME Turbo:1–5. http://proceedings.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/conferences/gt2005/72539/.

  26. Amutio M, Lopez G, Alvarez J, Moreira R, Duarte G, Nunes J, et al. Pyrolysis kinetics of forestry residues from the Portuguese Central Inland Region. Chem Eng Res Des (Internet). 2013;91:2682–90. https://doi.org/10.1016/j.cherd.2013.05.031.

    Article  CAS  Google Scholar 

  27. Tran KQ, Bach QV, Trinh TT, Seisenbaeva G. Non-isothermal pyrolysis of torrefied stump—a comparative kinetic evaluation. Appl Energy. 2014;136:759–66.

    Article  CAS  Google Scholar 

  28. Skodras G, Grammelis P, Basinas P, Kakaras E, Sakellaropoulos G. Pyrolysis and combustion characteristics of biomass and waste-derived feedstock. Ind Eng Chem Res (Internet). 2006;45:3791–9. http://pubs.acs.org/doi/abs/10.1021/ie060107g.

    Article  CAS  Google Scholar 

  29. Mui ELK, Cheung WH, Lee VKC, McKay G. Compensation effect during the pyrolysis of tyres and bamboo. Waste Manag. 2010;30:821–30.

    Article  CAS  Google Scholar 

  30. Ali I, Bahadar A. Red Sea seaweed (Sargassum spp.) pyrolysis and its devolatilization kinetics. Algal Res. 2017;21:89–97.

    Article  Google Scholar 

  31. Ghaly AE, MacDonald KN. Drying of poultry manure for use as animal feed. Am J Agric Biol Sci (Internet). 2012;7:239–54. http://thescipub.com/PDF/ajabssp.2012.239.254.pdf.

    Article  CAS  Google Scholar 

  32. Becker EW. Micro-algae as a source of protein. Biotechnol Adv (Internet). 2007;25:207–10. http://www.sciencedirect.com/science/article/pii/S073497500600139X.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the National Council for Scientific and Technological Development (CNPq No 161524/2015-0) and Higher Education Personnel Improvement Coordination (CAPES), for providing the scholarships, and the owner of the laying farm, for enabling the sampling procedure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Godinho.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 559 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Junges, J., Collazzo, G.C., Perondi, D. et al. Critical analysis of non-isothermal kinetics of poultry litter pyrolysis. J Therm Anal Calorim 134, 2329–2338 (2018). https://doi.org/10.1007/s10973-018-7710-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7710-0

Keywords

Navigation