Skip to main content
Log in

Parametric studies of heat and mass transfer process for two-stage biochar production from poultry litter pellet biomass

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

The study presents a parametric study of pyrolysis of poultry litters under isothermal heating conditions using a two-stage pyrolysis scheme and a downer separation technique. The study aims to increase the yield of biochar through pyrolysis using a two-stage kinetic process. The thermo-physical properties of mild steel and poultry litter were used to develop a simulation with a finite element method and COMSOL multiphysics to predict biochar yield at different temperatures and residence time. The numerical model was validated by comparing the predicted and the experimental results from the literature with a percentage difference of 1.3 to 11% and an R2 value of 0.9124. Further parametric studies showed that for the pyrolysis of 0.5 kg of poultry litters, a maximum yield of biochar of 42.9% was obtained at a lower temperature of 573.15oK with a residence time of 9000 s. Higher temperature favoured gas yield while biochar yield declined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Wang C, Du M, Feng H, Jin H (2022) Experimental investigation on biomass gasification mechanism in supercritical water for poly-generation of hydrogen-rich gas and biochar. Fuel 319:123809

    Article  CAS  Google Scholar 

  2. Mellin P, Kantarelis E, Yang W (2014) Computational fluid dynamics modelling of biomass fast pyrolysis in a fluidized bed reactor, using a comprehensive chemistry scheme. Fuel 117:704–715

    Article  CAS  Google Scholar 

  3. Jin HZ, Zhen BW, Hui Z, Yuan YT, Hong HS, Chao HY (2015) Multi-scale CFD simulation of hydrodynamics and cracking reactions in fixed fluidized bed reactors. Appl Petrochem Res 5:255–261. https://doi.org/10.1007/s13203-015-0130-1

    Article  CAS  Google Scholar 

  4. Hiroki H., H. Hiroomi, I. Muhammad, Numerical analysis on wood pyrolysis in pre-vacuum chamber, Journal of Sustainable Bioenergy Systems, 4 (2014) 149–160 Published Online September 2014 in SciRes. doi.org/https://doi.org/10.4236/jsbs.2014.43014.

  5. Chan WR, Kelbon M, Krieger BB (1985) Modelling and experimental verification of physical and chemical processes during pyrolysis of a large biomass particle. Fuel 64:1505–1513. https://doi.org/10.1016/0016-2361(85)90364-3

    Article  CAS  Google Scholar 

  6. Saastamoined JJ (2006) Simplified model for calculation of devolatilization in fluidized beds. Fuel 85:2385–2395

    Google Scholar 

  7. Papadakis K, Gu S, Bridgwater AV, Gerhauser H (2009) Application of CFD to model fast pyrolysis of biomass. Fuel Process Technol 90:504–512. https://doi.org/10.1016/j.fuproc.2009.01.010

    Article  CAS  Google Scholar 

  8. Papadakis K, Gu S, Bridgwater AV (2010) A CFD approach on the effect of particle size on char entrainment in bubbling fluidised bed reactors. Biomass Bioenerg 34:21–29. https://doi.org/10.1016/j.biombioe.2009.09.007

    Article  CAS  Google Scholar 

  9. Wang Y, Yan L (2008) CFD studies on biomass thermochemical conversion. Int J Mol Sci 9:1108–1130. https://doi.org/10.3390/ijms9061108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jelle R., Heat and mass transfer modelling of auger reactors. A master’s degree thesis submitted to the University of GENT. Masterproef voorgedragen tot het behalen van de graad van Master in de bio-ingenieurswetenschappen: Chemie en bioprocestechnologie (2016).

  11. Mazloum S, S. Awad , Y. Abou Msallem , N. Allam , K. Loubar , M. Tazerout (2019). Modelling of a pyrolysis batch reactor using COMSOL multiphysics. MATEC Web of Conferences 261, 04003 (2019

  12. Pandey DS, Kwapinska M, Gómez-Barea A, Horvat A, Fryda LE, Rabou LP, Leahy JJ, Kwapinski W (2016) Poultry litter gasification in a fluidized bed reactor: effects of gasifying agent and limestone addition. Energy Fuels 30:3085–3096

    Article  CAS  Google Scholar 

  13. Pandey D S, Giannis Katsaros, Christian Lindfors, James J. Leahy and Savvas A. Tassou (2019) Fast pyrolysis of poultry litter in a bubbling fluidised bed reactor: energy and nutrient recovery. Sustainability 2019, 11, 2533. https://doi.org/10.3390/su11092533

  14. Cantrell KB, Hunt PG, Uchimiya M, Novak JM, Ro KS (2012) Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour Technol 107:419–428

    Article  CAS  PubMed  Google Scholar 

  15. Shaaban M, L V Zwieten, S Bashir, A Younas, A Núñez-Delgadod, M A Chhajro et al (2018).A concise review of biochar application to agricultural soils to improve soil conditions and fight pollution. Journal of Environmental Management 228 (2018) 429–440

  16. Li H, Dong X, Da Silva EB, De Oliveira LM, Chen Y, Ma LQ. 2017. Mechanisms of metal sorption by biochars: biochar characteristics and modifications. Chemosphere 178:466_478. https://doi.org/10.1016/j.chemosphere.2017.03.072.

  17. Gwenzi W, Chaukura N, Noubactep C, Fnd M. 2017. Biochar-based water treatment systems as a potential low-cost and sustainable technology for clean water provision.

  18. Journal of Environmental Management 197:732_749.

  19. Dai Y, Zhang N, Xing C, Cui Q, Sun Q. 2019. The adsorption, regeneration and engineering applications of biochar for removal organic pollutants: a review. Chemosphere 223:12_27. https://doi.org/10.1016/j.chemosphere.2019.01.161

  20. Wang J, Wang S. 2019. Preparation, modification and environmental application of biochar: a review. Journal of Cleaner Production 227:1002_1022. https://doi.org/10.1016/j.jclepro.2019.04.282.

  21. Fawzy S · A I. Osman · H Yang · J Doran3· D W. Rooney (2021). Industrial biochar systems for atmospheric carbon removal: a review. Environmental Chemistry Letters. https://doi.org/10.1007/s10311-021-01210-1

  22. Zhou Y, Liu X, Xiang Y, Wang P, Zhang J, Zhang F, Wei J, Luo L, Lei M, Tang L.2017. Modification of biochar derived from sawdust and its application in removal of tetracycline and copper from aqueous solution: adsorption mechanism and modelling. Bioresource Technology 245:266_273. https://doi.org/10.1016/j.biortech.2017.08.178

  23. I Wani Sa Ramola3, A Garg, Vi Kushvaha, 2020 A critical review of biochar applications in geoengineering infrastructure: moving beyond agricultural and environmental perspectives Biomass Conversion and Biorefinery https://doi.org/10.1007/s13399-021-01346-8

  24. Fawzy S, Osman AI, C F, A H. Al-Muhtaseb, J Harrison, A S. Al-Fatesh, A H. Fakeeha, D W. Rooney, (2022) Kinetic modelling for pyrolytic conversion of dedicated short rotation woody crop with predictions for isothermal, non-isothermal and stepwise heating regimes. Applications in Energy and Combustion Science 9(2022):100048

    Article  Google Scholar 

  25. Mahmood H, N Ramzan, A Shakeel,M Moniruzzaman, T Iqbal, M Ali Kazmi. Kinetic modeling and optimization of parameters for biomass pyrolysis: a comparison of different lignocellulosic biomass. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. https://doi.org/10.1080/15567036.2018.1549144

  26. Ranzi E, , P E A Debiagi, A Frassoldati (2017). Mathematical modeling of fast biomass pyrolysis and bio-oil formation. Note I: Kinetic mechanism of biomass pyrolysis. ACS Sustainable Chem. Eng. 2017, 5, 4, 2867–2881

  27. Lewis AD, Fletcher TH (2013) Prediction of sawdust pyrolysis yields from a flat-flame burner using the CPD model. Energy Fuels 27(2):942–953. https://doi.org/10.1021/ef3018783

    Article  CAS  Google Scholar 

  28. Melaaen MC, GrHnli MG (1997) Modelling and simulation of moist wood drying and pyrolysis. In: Bridgwater AV, Boocock DBG (eds) Developments in thermochemical biomass conversion. Blackie, London, pp 132–146

    Chapter  Google Scholar 

  29. Bryden KM, Ragland KW, Rutland CJ (2002) Modelling thermally thick pyrolysis of wood. Biomass Bioenerg 22:41–53

    Article  CAS  Google Scholar 

  30. Anca-Couce A, Obernberger I (2016) Application of a detailed biomass pyrolysis kinetic scheme to hardwood and softwood torrefaction. Fuel 167:158–167. https://doi.org/10.1016/j.fuel.2015.11.062

    Article  CAS  Google Scholar 

  31. Borello D, Cedola L, Frangioni GV, Meloni R, Venturini P, De Filippis P, de Caprariis B (2016) Development of a numerical model for biomass packed bed pyrolysis based on experimental validation. Appl Energy 164:956–962

    Article  ADS  CAS  Google Scholar 

  32. Arena U., Process and technological aspects of municipal solid waste gasification. A review. Waste management (New York, N.Y.), 32(4), 625–639. Aston University, Birmingham: BioEnergy Research Group, 2012.

  33. Weldekidan H, Strezov V, Kan T, Kumar R, He J, Town G (2019) Solar assisted catalytic pyrolysis of chicken-litter waste with in-situ and ex-situ loading of CaO and char. Fuel 246(2019):408–416

    Article  CAS  Google Scholar 

  34. Berrueco C, Esperanza E, Mastral FJ, Ceamanos J, García-Bacaicoa P (2005) Pyrolysis of waste tyres in an atmospheric static-bed batch reactor: analysis of the gases obtained. J Anal Appl Pyrolysis 74(1):245–253

    Article  CAS  Google Scholar 

  35. Bashir M, Yu X, Hassan M, YMakkawi, (2017) Modeling and performance analysis of biomass fast pyrolysis in a solar-thermal reactor. ACS Sustainable Chem Eng 2017(5):3795–3807

    Article  Google Scholar 

  36. Huard M, Berruti F, Briens C (2010) Experimental study of a novel fast gas-solid separator for pyrolysis reactors. Int J Chem React Eng 8(1):1–22

    Google Scholar 

  37. Makkawi Y (2019) Xi Yu, Raffaella Ocone, Parametric analysis of biomass fast pyrolysis in a downer fluidized bed reactor. Renewable Energy. https://doi.org/10.1016/j.renene.2019.05.077

    Article  Google Scholar 

  38. Liden AG, Berruti F, Scott DS (1988) A kinetic model for the production of liquids from the flash pyrolysis of biomass. Chem Eng Commun 65:207–221

    Article  CAS  Google Scholar 

  39. Nandan R, Roy GG, Lienert TJ, Debroy T (2007) Three-dimensional heat and material flow during friction stir welding of mild steel. Acta Mater 55:883–895

    Article  ADS  CAS  Google Scholar 

  40. McMullen J., O.O. Fasina, C.W. Wood, Y. Feng, Storage and handling characteristics of pellets from poultry litter, Applied Engineering in Agriculture. Vol. 21(4): 645–651. https://doi.org/10.13031/2013.18553. Published by the American Society of Agricultural and Biological Engineers, St. Joseph, Michigan, 2005.

  41. Ohno T, Chorover J, Omoike A, Hunt J (2007) Molecular weight and humification index as predictors of adsorption for plant- and manure-derived dissolved organic matter to goethite. Eur J Soil Sci 58:125–132. https://doi.org/10.1111/j.1365-2389.2006.00817

    Article  Google Scholar 

  42. Bates RB, Ghoniem AF (2014) Modeling kinetics-transport interactions during biomass torrefaction. Fuel 137:216–229

    Article  CAS  Google Scholar 

  43. Koufopanos CA, Maschio G, Lucchesi A (1989) Kinetic modeling of the pyrolysis of biomass and biomass components. Can J Chem Eng 67(1):75–84

    Article  CAS  Google Scholar 

  44. F R Vieira, C M. Romero Luna , G L.A.F. Arce, I Avila (2020). Optimization of slow pyrolysis process parameters using a fixed bed reactor for biochar yield from rice husk. Biomass and Bioenergy 132 (202

  45. Li J, Stoliarov SI (2014) Measurement of kinetics and thermodynamics of the thermal degradation for charring polymers”. Polym Degrad Stab 106:2–15

    Article  CAS  Google Scholar 

  46. Li J., J. Gong, S.I. Stoliarov, “Development of pyrolysis models for charring polymers,” Polymer Degradation and Stability, accepted for publication. https://doi.org/10.1016/j.polymdegradstab.2015.03.003.

  47. McKinnon M.B., S.I. Stoliarov, A. Witkowski Development of a pyrolysis model for corrugated cardboard, Combustion and Flame, vol. 160 (2013) pp. 2595–2607.

  48. Babu BV, Chaurasia AS (2004) Heat transfer and kinetics in the pyrolysis of shrinking biomass particle. Chem Eng Sci 59:1999–2012

    Article  CAS  Google Scholar 

  49. Di Blasi C (1993) Analysis of convection and secondary reaction effects within porous solid fuels undergoing pyrolysis. Combust Sci Technol 90:315–340

    Article  Google Scholar 

  50. Vieira F.R., C.M.R. Luna, G.L.A. Ferrufino, I. Ávila. A study of biochar yield from slow pyrolysis of rice husk. 24th ABCM International Congress of Mechanical Engineering December 3–8, 2017, Curitiba, PR, Brazil.

  51. Collard F.X., J. Blin, A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin, Renew. Sustain. Energy Rev. 38 (2014) 594e608, https://doi.org/10.1016/j.rser.2014.06.013.

  52. Bai X., G. Wang, Z. Zhu, C. Cai, Z. Wang, D. Wang, Investigation of improving the yields and qualities of pyrolysis products with combination rod-milled and torrefaction pre-treatment. Renewable Energy 151 (2020) 446e453. https://doi.org/10.1016/j.renene.2019.11.040

  53. Park WC, Atreya A, Baum HR (2010) Experimental and theoretical investigation of heat and mass transfer processes during wood pyrolysis. Combust Flame 157(2010):481–494

    Article  ADS  CAS  Google Scholar 

  54. Atreya A, Olszewski P, Chen Y, Baum HR (2017) The effect of size, shape and pyrolysis conditions on the thermal decomposition of wood particles and firebrands. Int J Heat Mass Transf 107(2017):319–328

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the kind support of the Africa Centre of Excellence for Sustainable Power and Energy Development University of Nigeria, Nsukka, Nigeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Macmanus Chinenye Ndukwu.

Ethics declarations

Institutional Review Board statement

Not applicable.

Consent to participate

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 9 Kinetic parameters used in simulation [49]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horsfall, I.T., Ndukwu, M.C., Abam, F. et al. Parametric studies of heat and mass transfer process for two-stage biochar production from poultry litter pellet biomass. Biomass Conv. Bioref. 14, 8591–8603 (2024). https://doi.org/10.1007/s13399-022-02774-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-022-02774-w

Keywords

Navigation