Skip to main content
Log in

The crystallization of polypropylene/halloysite fibers

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The halloysite (HNT) in the form of nanotubes was used as an agent for the improved mechanical, thermo-mechanical as well as surface properties of polypropylene (PP) fibers. The halloysite is the nanoadditive that can affect differently the crystallization of PP in the non-oriented and oriented systems. The structure and mechanical properties of PP and PP/HNT fibers depended on the crystallinity and crystallization kinetics of PP at the fiber preparation. The Avrami method on the determination of isothermal crystallization kinetics parameters as well as an estimation of melting and crystallization temperatures and melting and crystallization enthalpies was used for the study of thermal behavior of polypropylene/halloysite non-oriented and oriented blends and fibers. Morphological structure, mechanical and thermo-mechanical properties of polypropylene/halloysite fibers were observed. An influence on all assessed properties was evaluated from the point of halloysite content in the PP and/or PP fibers. The increased HNT content in the non-oriented PP/HNT blends at the isothermal crystallization increases the rate crystallization (decreased t1/2 and free energy σe, increased K) of PP in comparison with the pure PP. The crystallinity of PP in the oriented PP/HNT fibers is not primarily affected by addition of the HNT content 3 mass% and does not change their mechanical and thermo-mechanical properties. 5 mass% HNT increases the crystallinity of PP in PP/HNT fibers expressing mainly the decrease in tenacity at the break, Young’s modulus and shrinkage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Guo B, Zou Q, Lei Y, Jia D. Structure and performance of polyamide 6/halloysite nanotubes nanocomposites. Polym J. 2009;41:835–42.

    Article  CAS  Google Scholar 

  2. Lecouvet B, Sclavons M, Bourbigot S, Devaux J, Bailly C. Water-assisted extrusion as a novel processing route to prepare polypropylene/halloysite nanotube nanocomposites: structure and properties. Polymer. 2011;52:4284–95.

    Article  CAS  Google Scholar 

  3. Sandip R, Amit D, Gert H. Tube-like natural halloysite/fluoroelastomer nanocomposites with simultaneous enhanced mechanical, dynamic mechanical and thermal properties. Eur Polym J. 2011;47:1746–55.

    Article  CAS  Google Scholar 

  4. Mingliang D, Baochun G, Demin J. Thermal stability and flame retardant effects of halloysite nanotubes on poly(propylene). Eur Polym J. 2006;42:1362–9.

    Article  CAS  Google Scholar 

  5. Pei-Zhang Z, Yue-Fei Z, Xiang-Feng L. Thermal stability of nucleation effect of different β-nucleating agents in isotactic polypropylene. J Therm Anal Calorim. 2018;132:1845–52.

    Article  CAS  Google Scholar 

  6. Sajed F, Mehdi H. Thermal and morphological aspects of silver decorated halloysite reinforced polypropylene nanocomposites. J Therm Anal Calorim. 2017;130:2069–78.

    Article  CAS  Google Scholar 

  7. Bo L, Runlai L. Preparation and property of ultrahigh molecular weight polyethylene/halloysite nanotube fiber. Fibers and Polymers. 2016;17(7):1043–7.

    Article  CAS  Google Scholar 

  8. Bin H, Xiang-Feng L, Yue-Fei Z. Effect of a novel compound nucleating agent calcium sulfate whiskers/β-nucleating agents dicyclohexyl-terephthalamide on crystallization and melting behavior of isotactic polypropylene. J Therm Anal Calorim. 2018;132:1145–52.

    Article  CAS  Google Scholar 

  9. Du M, Guo B, Jia D. Newly emerging applications of halloysite nanotubes: a review. Polym Intern. 2010;59:574–95.

    CAS  Google Scholar 

  10. Wang B, Huang H-X. Effects of halloysite nanotube orientation on crystallization and thermal stability of polypropylene nanocomposites. Polym Degrad Stab. 2013;98:1601–8.

    Article  CAS  Google Scholar 

  11. Yuan P, Tan D, Bergaya F. Properties and applications of halloysite nanotubes: recent research advances and future prospects. Appl Clay Sci. 2015;112–112:75–93.

    Article  CAS  Google Scholar 

  12. Du M, Guo B, Wan J, Zou Q, Jia D. Effects of halloysite nanotubes on kinetics and activation energy of non-isothermal crystallization of polypropylene. J Polym Res. 2010;17:109–18.

    Article  CAS  Google Scholar 

  13. Guo B, Zou Q, Lei Y, Du M, Liu M, Jia D. Crystallization behavior of polyamide 6/halloysite nanotubes nanocomposites. Thermochim Acta. 2009;484:48–56.

    Article  CAS  Google Scholar 

  14. Liu MX, Guo BC, Du ML, Chen F, Jia DM. Halloysite nanotubes as a novel β-nucleating agent for isotactic polypropylene. Polymer. 2009;50:3022–30.

    Article  CAS  Google Scholar 

  15. Wu W, Wagner MH, Xu Z. Surface treatment mechanism of nano-SiO2 and the properties of PP/nano-SiO2 composite Materials. Colloid Polym Sci. 2003;281:550–5.

    Article  CAS  Google Scholar 

  16. Naffakh M, Martín Z, Marco C, Gómez MA, Jiménez I. Isothermal crystallization kinetics of isotactic PP with inorganic fullerene-like WS2 nanoparticles. Thermochim Acta. 2008;472:11–6.

    Article  CAS  Google Scholar 

  17. Papageorgiou GZ, Achilias DS, Bikiaris DN, Karayannidis GP. Crystallization kinetics and nucleation activity of filler in PP/surface-treated SiO2 nanocomposites. Thermochim Acta. 2005;427:117–28.

    Article  CAS  Google Scholar 

  18. Zhang QX, Yu ZZ, Xie XL, Mai YW. Crystallization and impact energy of PP/CaCO3 nanocomposites with nonionic modifier. Polymer. 2004;45:5985–94.

    Article  CAS  Google Scholar 

  19. Chan ChM, Wu J, Li JX, Cheung YK. PP/calcium carbonate nanocomposites. Polymer. 2002;43:2981–92.

    Article  CAS  Google Scholar 

  20. Yiping H, Guangmei Ch, Zhen Y, Hongwu L, Yong W. Non-isothermal crystallization behaviour of PP with nucleating agents and nano-calcium carbonate. Eur Polym J. 2005;41:2753–60.

    Article  CAS  Google Scholar 

  21. Marcinčin A, Hricová M, Ujhelyiová A, Brejka O, Michlík P, Dulíková M, Strecká Z, Chmela S. Effect of inorganic (nano)fillers on the UV barrier properties, photo and thermal degradation of PP fibers. Fibers Text East Eur. 2009;17:29–35.

    Google Scholar 

  22. Chuah KP, Gan SN, Chee KK. Determination of Avrami exponent by differential scanning calorimetry for non-isothermal crystallization of polymers. Polymer. 1998;40:253–9.

    Article  Google Scholar 

  23. Cho K, Li F, Choi J. Crystallization and melting behaviour of PP and maleated PP blends. Polymer. 1999;40:1719–29.

    Article  CAS  Google Scholar 

  24. Di Lorenzo ML, Silvestre C. Non-isothermal crystallization of polymers. Prog Polym Sci. 1999;24:917–50.

    Article  Google Scholar 

  25. Avrami MJ. Granulation, phase change, and microstructure kinetics of phase change. III. J Chem Phys. 1941;9:177.

    Article  CAS  Google Scholar 

  26. Ozawa T. Kinetics of non-isothermal crystallization. Polymer. 1971;12:150–8.

    Article  CAS  Google Scholar 

  27. Dobreva A, Gutzow I. Activity of substrates in the catalyzed nucleation of glass-forming melts. I. Theory. J Non-cryst Solids. 1993;162:1–12.

    Article  CAS  Google Scholar 

  28. Dobreva A, Gutzow I. Activity of substrates in the catalyzed nucleation of glass-forming melts. II. Experimental evidence. J Non-cryst Solids. 1993;162:13–25.

    Article  CAS  Google Scholar 

  29. Mandelkern L. Crystallization of polymers. New York: McGraw-Hill; 1994. p. 306.

    Google Scholar 

  30. Sharples A. Overall kinetics of crystallization. In: Sharples A, editor. Introduction to polymer crystallization. London: Edward Arnold; 1996. p. 44–59.

    Google Scholar 

  31. Zhang W, Hu Z, Zhang Y, Lu C, Deng Y. Gel-spun fibers from magnesium hydroxide nanoparticles and UHMWPE nanocomposite: the physical and flammability properties. Compos B. 2013;51:276–81.

    Article  CAS  Google Scholar 

  32. Petkova M, Hýlová M, Ujhelyiová A. Physical modification of polypropylene fibers used in construction. J Text Inst. 2017;108(2):196–202.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Slovak Research and Development Agency under the Contract No: APVV-14-0175.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Ujhelyiová.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petková, M., Ryba, J., Hrabovská, V. et al. The crystallization of polypropylene/halloysite fibers. J Therm Anal Calorim 136, 1093–1101 (2019). https://doi.org/10.1007/s10973-018-7703-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7703-z

Keywords

Navigation