Skip to main content
Log in

Synthesis and thermal energy storage properties of a calcium-based room temperature phase change material for energy storage

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In order to obtain a low-cost, high latent heat and thermostable phase change material with a phase change temperature between 18 and 25 °C as a room temperature phase change material, a novel solid–liquid calcium-based composite named as PCM-Ca of 44.6% CaCl2, 6.9% Ca(NO3)2, 1.2% SrCl2 and 47.3% H2O with a phase change temperature of 21.8 °C and latent heat of 155.5 J g−1 was developed. The determination of thermal performances of PCM-Ca indicated that the thermal conductivities in liquid and solid state are of 0.6429 and 0.8256 W m−1 K−1, and the thermal conductivity in the phase change point is 1.2401 W m−1 K−1; the specific heat capacities at the temperature range of 5.5–26.5 °C and 31.5–38.5 °C were fitted as y = 0.0001x4 − 0.0042x3 + 0.0707x2 − 0.4151x + 3.9526 (r = 0.9999) and y = −0.0001x4 + 0.0208x3 − 1.1155x2 + 26.477x + 231.57 (r = 0.9984), respectively. The stability analysis demonstrated that PCM-Ca is stable at the temperatures less than 130 °C, and no phase separation and the obvious supercooling phenomenon were presented after thirty times cycle use. This material PCM-Ca has a potential for energy storage application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lewis NS. Toward cost-effective solar energy use. Science. 2007;315(5813):798–801.

    Article  CAS  PubMed  Google Scholar 

  2. Abbas MM, Tawhid MA, Saleem K, Zia M, Saqib NA, Malik H, Mahmood H. Solar energy harvesting and management in wireless sensor networks. Int J Distrib Sens Netw. 2014;2014(3):8.

    Google Scholar 

  3. Zhou GB, Zhang YP, Zhang QL, Lin KP, Di HF. Performance of a hybrid heating system with thermal storage using shape-stabilized phase-change material plates. Appl Energy. 2007;84(10):1068–77.

    Article  Google Scholar 

  4. Xi P, Xia L, Fei PF, Zhang D, Cheng BW. Preparation and performance of a novel thermoplastics polyurethane solid–solid phase change materials for energy storage. Sol Energy Mater Sol Cells. 2012;102(3):36–43.

    Article  CAS  Google Scholar 

  5. Zhang RY. Phase change materials and phase change energy storage technology. Beijing: Science Press; 2009.

    Google Scholar 

  6. Zalba B, Marín JM, Cabeza LF, Mehling H. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng. 2003;23(3):251–83.

    Article  CAS  Google Scholar 

  7. ASTM D2766-09: Standard Test Method for Specific Heat of Liquids and Solids. West Conshohocken: ASTM International; 2009.

  8. ASTM E793-06: Standard Test Method for Enthalpies of Fusion and Crystallization by Differential Scanning Calorimetry. West Conshohocken: ASTM International; 2006.

  9. Tyagi VV, Buddhi D. Thermal cycle testing of calcium chloride hexahydrate as a possible PCM for latent heat storage. Sol Energy Mater Sol Cells. 2008;92(8):891–9.

    Article  CAS  Google Scholar 

  10. Zhu XQ, Lu JS, Sun JL, Li SL, Li NJ, Ben N. Research on heat storage performances of the heat exchanger using calcium chloride hexahydrate as phase-change material. Inorg Chem Ind. 2007;39(8):56–8.

    CAS  Google Scholar 

  11. Brandste’iter A. On the stability of calcium-chloride hexahydrate in thermal storage-systems. Sol Energy. 1988;41(2):183–91.

    Article  Google Scholar 

  12. Carlsson B, Stymne H, Wettermark G. An incongruent heat-of-fusion system-CaCl2·6H2O-made congruent through modification of the chemical composition of the system. Sol Energy. 1979;23(4):343–50.

    Article  CAS  Google Scholar 

  13. Lane GA. Phase change materials for energy storage nucleation to prevent supercooling. Sol Energy Mater Sol Cells. 1992;27:135–60.

    Article  CAS  Google Scholar 

  14. Wolf D, Roy A, Koren E. Heat-storage compositions. Israel IL 61572 A. 1983-09-30.

  15. Xu YL, Liu D. The supercooling property of calcium chloride hexahydrate phase change material. Mater Eng. 2006;(s1):218–21.

  16. Tyagi VV, Buddhi D. Thermal cycle testing of calcium chloride hexahydrate as a possible PCM for latent heat storage. Sol Energy Mater Sol Cells. 2008;92(8):891–9.

    Article  CAS  Google Scholar 

  17. Li X, Zhou Y, Nian H. Phase change behavior of latent heat storage media based on calcium chloride hexahydrate composites containing strontium chloride hexahydrate and oxidation expandable graphite. Appl Therm Eng. 2016;102:38–44.

    Article  CAS  Google Scholar 

  18. Liu D, Xu Y. Thermoproperties research on nucleators-CaCl2·6H2O-composites under distictive systems. Acta Energ Sol Sin. 2007;28(7):732–8.

    Google Scholar 

  19. Li Z, Xu L, Huang HJ. The study of phase change constant temperature material calcium chloride hexahydrate. J Funct Mater. 2007;38:3162–3.

    Google Scholar 

  20. Ma JW, Wang HL, Li K. Study on properties of calcium chloride hexahydrate suitable for greenhouse application. J Agric Mech Res. 2013;7:211–6.

    Google Scholar 

  21. Paris J, Jolly R. Observations sur le comportement a la fusion-solidification du chlorure de calcium hexahydrate. Thermochim Acta. 1989;152:271–8.

    Article  CAS  Google Scholar 

  22. Feilchenfeld H, Fuchs J, Kahana F. The melting point adjustment of calcium chloride hexahydrate by addition of potassium chloride or calcium bromide hexahydrate. Sol Energy. 1985;34(2):199–201.

    Article  CAS  Google Scholar 

  23. Zhu XQ, Hu J, Zhao HY. Phase transformation temperature adjustment of calcium chloride hexahydrate. Key Eng Mater. 2012;512–515:386–9.

    Article  CAS  Google Scholar 

  24. Liu C. Study on stratiifcation mechanism and conformity of calcium chloride hexahydrate during recrystallization. China Build Mater Sci Technol. 2015;24(3):52–3.

    Google Scholar 

  25. Kimura H, Kai J. Phase change stability of CaCl2·6H2O. Sol Energy. 1984;33(1):49–55.

    Article  CAS  Google Scholar 

  26. Gu XB, Niu JJ, Qin S. Antarcticite, a phase change material for thermalenergy storage—experiments and simulation. Acta Mineral Sin. 2013;S1:28.

    Google Scholar 

  27. Ushak S, Suárez M, Véliz S. Characterization of calcium chloride tetrahydrate as a phase change material and thermodynamic analysis of the results. Renew Energy. 2016;95:213–24.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. U1607123, U1607129, 21773170), the China Postdoctoral Science Foundation (Grant Nos. 2016M592827, 2016M592828) and the Yangtze Scholars and Innovative Research Team in Chinese University (Grant No. IRT_17R81).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoping Yu or Tianlong Deng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, L., Yu, X., Gao, D. et al. Synthesis and thermal energy storage properties of a calcium-based room temperature phase change material for energy storage. J Therm Anal Calorim 135, 3215–3221 (2019). https://doi.org/10.1007/s10973-018-7610-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7610-3

Keywords

Navigation