Skip to main content
Log in

Thermal behavior of collagen crosslinked with tannic acid under microwave heating

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

With the aim at assessment of thermal stabilities of collagen crosslinked with tannic acid under microwave, some thermo-analysis methods have been employed to analyze the properties of the crosslinked product. Meanwhile, for getting some information about the non-thermal effect of microwave on the process, microwave heating with simultaneous cooling (MHSC) method was adopted and compared with water bath heating. The thermal decomposition of the collagen material was characterized by the mass-loss ratio with thermo-gravimetry/derivative thermo-gravimetry curves recorded in nitrogen flow. The crosslinked collagen under MHSC exhibited a higher peak temperature and a lower degree of thermo-oxidative decomposition. The thermal denaturation of the material was determined by the differential scanning calorimetry (DSC) analysis in nitrogen flow. DSC curves showed that microwave gave a higher denaturation temperature and enthalpy, which increased about 3.9 °C and 73.0 J g−1, respectively. The hydrothermal stability of the product was evaluated using the method of micro hot table in glycerol–water condition. The results showed that the shrinkage temperature increased about 3.5 °C under MHSC. In result, microwave gave a higher thermal and hydrothermal stability of the crosslinked collagen, which could be attributed to a stronger bonding of the collagen with tannic acid as a result of microwave non-thermal effect. The results presented here may lay a foundation for the application of microwave in vegetable tanning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kanth SV, Venba R, Madhan B, Chandrababu NK, Sadulla S. Cleaner tanning practices for tannery pollution abatement: role of enzymes in ecofriendly vegetable tanning. J Clean Prod. 2009;17:507–15.

    Article  CAS  Google Scholar 

  2. Zhu XH, Hang QM. Microscopical and physical characterization of microwave and microwave-hydrothermal synthesis products. MICRON. 2013;44:21–44.

    Article  CAS  PubMed  Google Scholar 

  3. Aivazoglou E, Metaxa E, Hristoforou E. Microwave-assisted synthesis of iron oxide nanoparticles in biocompatible organic environment. AIP Adv. 2018;8(4):048201.

    Article  CAS  Google Scholar 

  4. Bona AJ, Amaral-Brito MG, Rodrigues JA, Daiane C, Franca FMG. Microwave radiation is effective at disinfecting dental stone surfaces without changing their physical properties. Gen Dent. 2017;65(2):42–6.

    PubMed  Google Scholar 

  5. Itarashiki T, Hayashi N, Yonesu A. Characteristics of plasma sterilizer using microwave torch plasma with AC high-voltage discharge plasma. Jpn J Appl Phys. 2016;55(1S):01AB03.

    Article  CAS  Google Scholar 

  6. Spiliopoulos S, Theodosiadou V, Barampoutis N, Katsanos K, Davlouros P, Reppas L, Kitrou P, Palialexis K, Konstantos C, Siores E, Alexopoulos D, Karnabatidis D, Brountzos E. Multi-center feasibility study of microwave radiometry thermometry for non-invasive differential diagnosis of arterial disease in diabetic patients with suspected critical limb ischemia. J Diabetes Complicat. 2017;31(7):1109–14.

    Article  PubMed  Google Scholar 

  7. Neira LM, Mays RO, Hagness SC. Human breast phantoms test beds for the development of microwave diagnostic and therapeutic technologies. IEEE Pulse. 2017;8(4):66–70.

    Article  PubMed  Google Scholar 

  8. Nan H, Arbabian A. Peak-power-limited frequency-domain microwave-induced thermoacoustic imaging for handheld diagnostic and screening tools. IEEE Trans Microw Theory Tech. 2017;65(7):2607–16.

    Article  Google Scholar 

  9. Sezer GG, Yesilel OZ, Sahin O, Arslanoglu H, Erucar I. Facile synthesis of 2D Zn(II) coordination polymer and its crystal structure, selective removal of methylene blue and molecular simulations. J Mol Struct. 2017;1143:355–61.

    Article  CAS  Google Scholar 

  10. Liu XC, Wan Q, Zhao Z, Liu JL, Zhang ZY, Deng FJ, Liu MY, Wen YQ, Zhang XY. Microwave-assisted Diels–Alder reaction for rapid synthesis of luminescent nanodiamond with AIE-active dyes and their biomedical applications. Mater Chem Phys. 2017;197:256–65.

    Article  CAS  Google Scholar 

  11. Alwin S, Shajan XS, Karuppasamy K, Warrier KGK. Microwave assisted synthesis of high surface area TiO2 aerogels: a competent photoanode material for quasi-solid dye-sensitized solar cells. Mater Chem Phys. 2017;196:37–44.

    Article  CAS  Google Scholar 

  12. Lu YJ, Zhao ZD, Chen YX, Wang J, Xu SC, Gu Y. Synthesis of allyl acrylpimarate by microwave irradiation and phase-transfer catalytic reaction and its UV-curing reactions as a new monomer. Prog Org Coat. 2017;109:9–21.

    Article  CAS  Google Scholar 

  13. Chen XX, Xu P, Xia ZN. Methods for non-thermal microwave effects in microwave assisted organic synthesis. Chem Bull. 2009;8:674–80.

    Google Scholar 

  14. Huang KM, Yang XQ. New progress in the study of non-thermal effect in chemical reaction accelerated by microwave. Prog Nat Sci. 2006;16(3):273–9.

    Google Scholar 

  15. Binner JGP, Hassine NA, Cross TE. The possible role of the preexponential factor in explaining the increased reaction-rates observed during the microwave synthesis of titanium carbide. J Mater Sci. 1995;30(21):5389–93.

    Article  CAS  Google Scholar 

  16. Sivalingam G, Agarwal N, Madras G. Kinetics of microwave-assisted polymerization of ϵ-caprolactone. J Appl Polym Sci. 2004;91(3):1450–6.

    Article  CAS  Google Scholar 

  17. Liang ZY, Lu CX, Luo J, Li BD. A polymer imidazole salt as phase-transfer catalyst in Halex fluorination irradiated by microwave. J Fluor Chem. 2007;128(6):608–11.

    Article  CAS  Google Scholar 

  18. Li H, Liao LQ, Liu LJ. Kinetic investigation into the non-thermal microwave effect on the ring-opening polymerization of ε-caprolactone. Macromol Rapid Commun. 2007;28(4):411–6.

    Article  CAS  Google Scholar 

  19. Arvela RK, Leadbeater NE. Suzuki coupling of aryl chlorides with phenylboronic acid in water, using microwave heating with simultaneous cooling. Org Lett. 2005;7(11):2101–4.

    Article  CAS  PubMed  Google Scholar 

  20. Singh BK, Appukkuttan P, Claerhout S, Parmar VS, Van der Eycken E. Copper(II)-mediated cross-coupling of arylboronic acids and 2(1 h)-pyrazinones facilitated by microwave irradiation with simultaneous cooling. Org Lett. 2006;8(9):1863–6.

    Article  CAS  PubMed  Google Scholar 

  21. Larsen R, Vest M, Nielsen K. Determination of hydrothermal stability (shrinkage temperature) of historical leather by the micro hot table technique. J Soc Leather Technol Chem. 1993;77:151–6.

    CAS  Google Scholar 

  22. Carsote C, Budrugeac P, Decheva R, Haralampiev NS, Miu L, Badea E. Characterization of a Byzantine manuscript by infrared spectroscopy and thermal analysis. Rev Roum Chim. 2014;56:429–36.

    Google Scholar 

  23. Budrugeac P, Cucos A, Miu L. Use of thermal analysis methods to asses the damage in the bookbindings of some religious books from XVIII century, stored in Romanian libraries. J Therm Anal Calorim. 2014;116:141–9.

    Article  CAS  Google Scholar 

  24. Budrugeac P, Miu L, Soukova M. The damage in the patrimonial books from Romanian libraries—thermal analysis methods and scanning electron microscopy. J Therm Anal Calorim. 2007;88:693–9.

    Article  CAS  Google Scholar 

  25. Cucos A, Budrugeac P, Miu L. DMA and DSC studies of accelerated aged parchment and vegetable-tanned leather samples. Thermochim Acta. 2014;583:86–93.

    Article  CAS  Google Scholar 

  26. Cucos A, Budrugeac P, Miu L, Mitrea S, Sbarcea G. Dynamic mechanical analysis (DMA) of new and historical parchments and leathers: correlations with DSC and XRD. Thermochim Acta. 2011;516:19–28.

    Article  CAS  Google Scholar 

  27. Cucos A, Budrugeac P. The suitability of DMA method for the characterization of recent and historical parchments and leathers. Int J Conserv Sci. 2010;1:13–8.

    Google Scholar 

  28. Shi JB, Puig R, Sang J, Lin W. A comprehensive evaluation of physical and environmental performances for wet-white leather manufacture. J Clean Prod. 2016;139:1512–9.

    Article  CAS  Google Scholar 

  29. Shi JB, Ren KS, Wang CH, Wang J, Lin W. A novel approach for wet-white leather manufacture based on tannic acid-laponite nanoclay combination tannage. J Soc Leather Technol Chem. 2016;100:25–30.

    CAS  Google Scholar 

  30. Shi JB, Zhou YL, Li XP, Lin W. A novel combination tanning based on tannic acid and attapulgite nanoclay. China Leather. 2013;42(3):1–5.

    Google Scholar 

  31. Jiang LY, Cheng F, Gu HB, Chen WY. A new method of measuring leather shrinkage temperature by micro hot table. Leather Sci Eng. 2013;23(2):14–8.

    CAS  Google Scholar 

  32. Budrugeac P, Carsote C, Miu L. Application of thermal analysis methods for damage assessment of leather in an old military coat belonging to the History Museum of BraAYov-Romania. J Therm Anal Calorim. 2017;127:765–72.

    Article  CAS  Google Scholar 

  33. Budrugeac P, Miu L, Bocu V, Wortmann FJ, Popescu C. Thermal degradation of collagen-based materials that are supports of cultural and historical objects. J Therm Anal Calorim. 2003;72:1057–65.

    Article  CAS  Google Scholar 

  34. Budrugeac P, Cucos A, Miu L. The use of thermal analysis methods for authentication and conservation state determination of historical and/or cultural objects manufactured from leather. J Therm Anal Calorim. 2011;104:439–50.

    Article  CAS  Google Scholar 

  35. Okamoto Y, Saeki K. Phase transition of collagen and gelatin. Kolloid-Zeitshrift und Zeitshrift fur Polymere. 1964;194:124–34.

    Article  CAS  Google Scholar 

  36. Onem E, Yorgancioglu A, Karavana HA, Yilmaz O. Comparison of different tanning agents on the stabilization of collagen via differential scanning calorimetry. J Therm Anal Calorim. 2017;129:615–22.

    Article  CAS  Google Scholar 

  37. Torres K, Trebacz H, Pietrzyk L, Torres A, Wallner G. Stability of peritoneal tissue evaluated by the means of DSC in obese patients undergoing laparoscopic cholecystectomy. J Therm Anal Calorim. 2017;130:2191–8.

    Article  CAS  Google Scholar 

  38. Schroepfer M, Meyer M. DSC investigation of bovine hide collagen at varying degrees of crosslinking and humidities. Int J Biol Macromol. 2017;103:120–8.

    Article  CAS  PubMed  Google Scholar 

  39. Sionkowska A, Kaczmarek B, Lewandowska K. Modification of collagen and chitosan mixtures by the addition of tannic acid. J Mol Liq. 2014;199:318–23.

    Article  CAS  Google Scholar 

  40. Tang HR, Covington AD, Hancock RA. Use of DSC to detect the heterogeneity of hydrothermal stability in the polyphenol-treated collagen matrix. J Agric Food Chem. 2003;51:6652–6.

    Article  CAS  PubMed  Google Scholar 

  41. Privalov PL. Microcalorimetry of macromolecules: the physical basis of biological structures. J Solut Chem. 2015;44:1141–61.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the National Natural Science Foundation of China (No. 21576171) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wuyong Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Liao, W., Zhang, J. et al. Thermal behavior of collagen crosslinked with tannic acid under microwave heating. J Therm Anal Calorim 135, 2329–2335 (2019). https://doi.org/10.1007/s10973-018-7341-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7341-5

Keywords

Navigation