Skip to main content
Log in

The effect of calcination temperature on the texture of silica gel waste

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this work, the effect of temperature on the texture of silica gel waste is presented and water vapour adsorption in a different humidity is highlighted. It was found that silica gel waste is a mesoporous material with the parallel plates pores. Its specific surface area is equal to 4.61 m2 g−1, and the calculated total pore volume is equal to 9.01 × 10−3 cm3 g−1. The texture of silica gel waste changed during calcination in a 188–550 °C temperature interval: SBET and ΣVP increased to 11.32 m2 g−1 and 30.06 × 10−3 cm3 g−1, respectively. It was determined that the water vapour pressure influenced the mineralogical composition and the quantity of adsorbed water in the samples. The obtained results were confirmed by the differential scanning microcalorimetry, X-ray diffraction, BET and water vapour adsorption analysis data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Agovino M, Ferrara M, Garofalo A. An exploratory analysis on waste management in Italy: a focus on waste disposed in landfill. Land Use Policy. 2016;57:669–81.

    Article  Google Scholar 

  2. Makarenko N, Budak O. Waste management in Ukraine: municipal solid waste landfills and their impact on rural areas. Ann Agrar Sci. 2017;15:80–7.

    Article  Google Scholar 

  3. Król D, Poskrobko S. Waste and fuels from waste. Part I. Analysis of thermal decomposition. J Therm Anal Calorim. 2012;109(2):619–28.

    Article  CAS  Google Scholar 

  4. Mendoza FJC, Altabella JE, Izquierdo AG. Application of inert wastes in the construction, operation and closure of landfills: calculation tool. Waste Manag. 2017;59:276–85.

    Article  Google Scholar 

  5. Baltakys K, Iljina A, Bankauskaite A. Thermal properties and application of silica gel waste contaminated with F ions for C–S–H synthesis. J Therm Anal Calorim. 2015;121(1):145–54.

    Article  CAS  Google Scholar 

  6. Eurostat. Waste statistics. http://ec.europa.eu/eurostat/statistics-explained/index.php/Waste_statistics. Accessed 13 Sept 2017.

  7. Bobrowicz J, Chyliński F. The influence of ilmenite mud waste on the hydration process of Portland cement. J Therm Anal Calorim. 2016;126(2):493–8.

    Article  CAS  Google Scholar 

  8. Vaičiukynienė D, Kantautas A, Vaitkevičius V, Jakevičius L, Rudžionis Ž, Paškevičius M. Effects of ultrasonic treatment on zeolite NaA synthesized from by-product silica. Ultrason Sonochem. 2015;27:515–21.

    Article  CAS  PubMed  Google Scholar 

  9. Girskas G, Skripkiūnas G, Šahmenko G, Korjakins A. Durability of concrete containing synthetic zeolite from aluminum fluoride production waste as a supplementary cementitious material. Constr Build Mater. 2016;117:99–106.

    Article  CAS  Google Scholar 

  10. Krysztafkiewicz A, Rager B, Maik M. Silica recovery from waste obtained in hydrofluoric acid and aluminum fluoride production from fluosilicic acid. J Hazard Mater. 1996;48:31–9.

    Article  CAS  Google Scholar 

  11. Iljina A, Baltakys K, Baltakys M, Siauciunas R. Neutralization and removal of compounds containing fluoride ions from waste silica gel. Rev Romana Mater. 2014;44:265–71.

    CAS  Google Scholar 

  12. Iljina A, Baltakys K, Bankauskaite A, Eisinas A, Kitrys S. The stability of formed CaF2 and its influence on the thermal behavior of C–S–H in CaO–silica gel waste-H2O system. J Therm Anal Calorim. 2017;127(1):221–8.

    Article  CAS  Google Scholar 

  13. Joint-stock “Lifosa” official website. http://www.lifosa.com/en/products-and-services. Accessed 13 Sept 2017.

  14. Girskas G, Skripkiūnas G. The effect of synthetic zeolite on hardened cement paste microstructure and freeze-thaw durability of concrete. Constr Build Mater. 2017;142:117–27.

    Article  CAS  Google Scholar 

  15. Baltakys K, Eisinas A, Dizhbite T, Jasina L, Siauciunas R, Kitrys S. The influence of hydrothermal synthesis conditions on gyrolite texture and specific surface area. Mater Struct. 2011;44:1687–701.

    Article  CAS  Google Scholar 

  16. Baltakys K, Siauciunas R, Kitrys S. Surface microstructure and specific surface area of pure and Na-substituted gyrolites. Mater Sci Pol. 2008;26(3):633–45.

    CAS  Google Scholar 

  17. Khalameida S, Sydorchuk V, Skubiszewska-Zięba J, Charmas B, Skwarek E, Janusz W. Hydrothermal, microwave and mechanochemical modification of amorphous zirconium phosphate structure. J Therm Anal Calorim. 2017;128(2):795–806.

    Article  CAS  Google Scholar 

  18. Bankauskaite A, Baltakys K. Thermal, texture and reconstruction properties of hydrotalcites substituted with Na+ or K+ ions. J Therm Anal Calorim. 2015;121(1):227–33.

    Article  CAS  Google Scholar 

  19. Keller JU, Staudt R. Gas adsorption equilibria: experimental methods and adsorptive isotherms. Berlin: Springer; 2005.

    Google Scholar 

  20. Rouquerol F, Rouquerol J, Sing KSW, Llewellyn P, Maurin G. Adsorption by powders and porous solids: principles, methodology and applications. 2nd ed. London: Academic Press; 2014.

    Google Scholar 

  21. Naderi M. Chapter fourteen: surface area: Brunauer–Emmett–Teller (BET). In: Tarleton S, editor. Progress in filtration and separation. London: Academic Press; 2015. p. 585–608.

    Chapter  Google Scholar 

  22. Baltakys K, Siauciunas R, Gendvilas R, Eisinas A, Dambrauskas T, Kitrys S. Physically and chemically bound H2O in the α-C2S hydrate structure. J Therm Anal Calorim. 2014;118(2):807–16.

    Article  CAS  Google Scholar 

  23. Baltakys K, Siauciunas R. Physically and chemically bound H2O in the gyrolite structure. Mater Sci Pol. 2009;27(1):255–63.

    CAS  Google Scholar 

  24. De Belie N, Kratky J, Van Vlierberghe S. Influence of pozzolans and slag on the microstructure of partially carbonated cement paste by means of water vapour and nitrogen sorption experiments and BET calculations. Cem Concr Res. 2010;40:1723–33.

    Article  CAS  Google Scholar 

  25. Dubina E, Wadsö L, Plank J. A sorption balance study of water vapour sorption on anhydrous cement minerals and cement constituents. Cem Concr Res. 2011;41:1196–204.

    Article  CAS  Google Scholar 

  26. Delong X, Yongqin L, Ying J, Longbao Z, Wenkui G. Thermal behavior of aluminum fluoride trihydrate. Thermochim Acta. 2000;352–353:47–52.

    Article  Google Scholar 

  27. Yang GY, Shi YC, Liu XD, Mujumdar AS. TG-DTG analysis of chemically bound moisture removal of AlF3·3H2O. Dry Technol. 2007;25:675–80.

    Article  CAS  Google Scholar 

  28. Dambrauskas T, Baltakys K, Eisinas A, Siauciunas R. A study on the thermal stability of kilchoanite synthesized under hydrothermal conditions. J Therm Anal Calorim. 2017;127(1):229–38.

    Article  CAS  Google Scholar 

  29. Lowell S, Shields JE, Thomas MA. Characterization of porus solids and powders: surface area, pore size and density. New York: Kluwer Academic Publisher; 2004.

    Book  Google Scholar 

  30. Skubiszewska-Zięba J, Charmas B, Kołtowski M, Oleszczuk P. Active carbons from waste biochars. Structural and thermal properties. J Therm Anal Calorim. 2017;130(1):15–24. https://doi.org/10.1007/s10973-017-6143-5.

    Article  CAS  Google Scholar 

  31. ALOthman ZA. A review: fundamental aspects of silicate mesoporous materials. Materials. 2012;5:2874–902.

    Article  CAS  PubMed Central  Google Scholar 

  32. Gregg SJ, Sing KSW. Adsorption, surface area and porosity. 2nd ed. London: Academic Press; 1982.

    Google Scholar 

  33. Kim SH, Liu BYH, Zachariah MR. Ultrahigh surface area nanoporous silica particles via an aero-sol–gel process. Langmuir. 2004;20:2523–6.

    Article  CAS  PubMed  Google Scholar 

  34. Cgristy AA. Quantitative determination of surface area of silica gel particles by near infrared spectroscopy and chemometrics. Colloids Surf A. 2008;322(1–3):248–52.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by a Grant (No. S-MIP – 17-92) from the Research Council of Lithuania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Baltakys.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dambrauskas, T., Baltakys, K., Rudelis, V. et al. The effect of calcination temperature on the texture of silica gel waste. J Therm Anal Calorim 134, 281–289 (2018). https://doi.org/10.1007/s10973-018-7168-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7168-0

Keywords

Navigation