Skip to main content
Log in

Heat resistance of portland cements

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Recent fire cases indicated again the importance of fire research. Fast development of construction technology requires new materials. Initiation and development of fire are strongly influenced by the choice of construction materials. In addition to their mechanical properties, their behaviour in elevated temperature is also of high importance. Residual compressive strength of concrete exposed to high temperatures is influenced by the following factors: water-to-cement ratio, cement-to-aggregate ratio, type of aggregate and water content of concrete before exposing it to high temperatures and the fire process. Therefore, mix design and composition of concrete are of high importance for high temperatures. Based on the literature, the fire resistance of concrete is influenced by the used cement type. As regards the cement type, considerable importance has been attached to the various auxiliary materials, such as slag, fly ash, trass, metakaolines and silica fume. There has been no special research devoted to the fire behaviour of pure portland cements. Pure portland cements can be made with various oxide compositions or with different grinding fineness, which increases the resistance of cements to fire. The question arises what effects grinding fineness and oxide composition have on fire resistance of cements. In my experiments, the resistance of portland cements of different composition and grinding fineness to fire (high temperature) were examined. For the test of the solidified cement paste, cement paste cubes of 30-mm edge length were prepared. The specimens were stored in water for 7 days and then in laboratory conditions for 21 days. The cubes of more than 28 days were heated to the given temperature in the furnace and then kept at the given temperature for 2 h (50, 150, 300, 500, 800 °C). Following the 2 h of thermal load, the specimens were examined once their temperature cooled down to room temperature. I have experimentally demonstrated that in case of portland cements, the grinding fineness and aluminate modulus of the cement (i.e. the oxide composition of the cement) have a significant effect on its fire resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dolezsai K, Pauka I. Cementgyártás. Budapest: Műszaki Könyvkiadó; 1964.

    Google Scholar 

  2. Bereczky E. A cement kötése és szilárdulása. Cementipari kézikönyv (szerkesztő: Talabér József). Budapest: Műszaki Könyvkiadó; 1966. p. 237–88.

  3. Tamás F. A cementhidratáció. Szilikátipari kézikönyv (főszerkesztő: Tamás Ferenc). Budapest: Műszaki Könyvkiadó; 1982. p. 318–23.

  4. Riesz L. Cement- és mészgyártási kézikönyv. Budapest: Építésügyi Tájékoztatási Központ; 1989.

    Google Scholar 

  5. Taylor HFW. Cement chemistry. 2nd ed. London: Thomas Telford Publishing; 1997.

    Book  Google Scholar 

  6. Bensted J. Hydration of portland cement. In: Gosh SN, editor. Advances in cement technology: chemistry, manufacture and testing. 2nd ed. New Delhi: Tech Books International; 2002. p. 31–86.

    Google Scholar 

  7. Zhang YM, Napier-Munn TJ. Effects of particle size distribution, surface area and chemical composition on portland cement strength. Powder Technol. 1995;83:245–52.

    Article  CAS  Google Scholar 

  8. Opoczky L. Tudományos kiadvány: a CEMKUT Kft. fontosabb kutatási-vizsgálati eredményeinek összefoglalása 1991–2005. Budapest: CEMKUT Kft; 2006.

  9. Opoczky L. A HOLCIM Hungária Zrt. Hejőcsabai Cementgyárban klinkertakarékos, környezetbarát cement előállítását elősegítő őrléstechnikai kutatások c. Tanulmány, 2007–2008. (készült a Miskolci Egyetem, Műszaki Földtudományi Kar, Eljárástechnikai Tanszék megbízásából).

  10. Opoczky L. A pernyék szilikátkémiai tulajdonságai. “Tiszta környezetünkért” Szénerőműi pernyék hasznosításával tudományos konferencián elhangzott előadás, A Miskolci Egyetem Közleménye A sorozat, Bányászat, Egyetemi Kiadó, Miskolc. 2001 55:97–106.

  11. Gável V. A csökkentett klinkerhányadú, környezetbarát cementek előállítását megalapozó örléselméleti és örléstechnológiai kutatások, Miskolc, Phd; 2013.

  12. Barbara P, Iwona W. Comparative investigations of influence of chemical admixtures on pozzolanic and hydraulic activities of fly ash with the use of thermal analysis and infrared spectroscopy. J Therm Anal Calorim. 2015;120:119–27.

    Article  CAS  Google Scholar 

  13. Yun L, Hung-Liang C. Thermal analysis and adiabatic calorimetry for early-age concrete members. J Therm Anal Calorim. 2015;122:937–45.

    Article  CAS  Google Scholar 

  14. Stepkowska ET, Bijen JM, Perez-Rodriguez JL. Thermal mass changes of portland cement and slag cements after water sorption. J Therm Anal Calorim. 1994;42:41–65.

    Article  CAS  Google Scholar 

  15. Pacewska B, Wilińska IG, Blonkowski G. Investigations of cement early hydration in the presence of chemically activated fly ash. J Therm Anal Calorim. 2008;93:769–76.

    Article  CAS  Google Scholar 

  16. Kerekes Zs, Beda L. Effect of the macro-structure on the flammability of the oxidized PAN fibre based woven textiles. J Text Cloth Technol. 2013 62:222; ISSN 0492-5882.

  17. Schneider U, Lebeda C. Fire protection of builldings (Baulicher Brandschutz). ISBN 3-17-015266-1. Stuttgart: W. Kohlhammer GmbH; 2000.

  18. Schneider U. Properties of materials at high temperatures, concrete. RILEM Publ., 2nd edn, Gesamthochschule Kassel, Universität Kassel; 1986.

  19. fib bulletin 38 Fire design of concrete structures- materials,, structures and modelling. ISBN: 978-2-88394-078-9, 2007.

  20. Grainger BN. Concrete at high tempereatures. UK: Central Electricity Resarch Laboratories; 1980.

    Google Scholar 

  21. Dias WPS, Khoury GA, Sulivan PJE. Mechanical properties of hardened cement paste exposed to temperatures up to 700 °C. ACI Mater J. 1990;87:160–6.

    CAS  Google Scholar 

  22. Xu Y, Wong YL, Poon CS, Anson M. Impact of high temperature on PFA concrete. Cem Concr Res. 2001;31:1065–73.

    Article  CAS  Google Scholar 

  23. Khoury GA, Sarshar R, Sulivan PJE. Factors affecting the compressive strength of unsealed cement paste and concrete at elevated temperatures up to 600 °C. In: Proceedings of the 2nd international workshop on mechanical behaviour of concrete under extreme thermal and hygral conditions. ISSN 0863-0720, Weimar; 1990. p. 89–92.

  24. Khoury GA, Grainger BN, Sullivan PJE. Transient thermal strain of concrete: literature review. Conditions within specimen and behaviour of individual constituents. Mag Concr Res. 1985;37:37–48.

    Google Scholar 

  25. Schneider U, Weiß R. Kinethical treatment of thermical deterioration of concretes and its mechanical influences. Cem Concr Res. 1997;11:22–9.

    Google Scholar 

  26. Bazant PZ, Kaplan FM. Concrete at high temperetures. London: Longman Group Limited. 1996; ISBN: 0-582-08626-4.

  27. Eurocode 2. Design of concrete structures. Part 1 general rules–structural fire design EN 1992-1-2:2002.

  28. Heikal M, El-Didamony H, Sokkary TM, Ahmed IA. Behavior of composite cement pastes containing microsilica and fly ash at elevated temperature. Constr Build Mater. 2013;38:1180–90.

    Article  CAS  Google Scholar 

  29. Mendes A, Sanjayan J, Collins F. Phase transformations and mechanical strength of OPC/slag pastes submitted to high temperatures. Mater Struct. 2008;41:345–50.

    Article  Google Scholar 

  30. Xu Y, Wong YL, Poon CS, Anson M. Influence of PFA on cracking of concrete and cement paste after exposure to high temperatures. Cem Concr Res. 2003;33:2009–16.

    Article  CAS  Google Scholar 

  31. Karakurt C, Topcu IB. Effect of blended cements with natural zeolite and industrial by-products on rebar corrosion and high temperature resistance of concrete. Constr Build Mater. 2012;35:906–11.

    Article  Google Scholar 

Download references

Acknowledgements

The author acknowledges the support by the János Bolyai Resarch Scholarship of the Hungarian Academy of Siences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Éva Lublóy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lublóy, É. Heat resistance of portland cements. J Therm Anal Calorim 132, 1449–1457 (2018). https://doi.org/10.1007/s10973-018-7132-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7132-z

Keywords

Navigation