Skip to main content
Log in

Thermal mass changes of portland cement and SLAG cements after water sorption

  • Published:
Journal of thermal analysis Aims and scope Submit manuscript

Abstract

A simple water sorption/retention (WS/WR) test, followed by stepwise static heating, was applied to the study of cement quality and the reactivity of its grain surface. The physically bound water and hence the specific surface both in the unhydrated and in the hydrated state were estimated as a function of the hydration time. Rehydration after heating at 220°C and contact with air was different inWS from that inWR samples, which indicates a difference in microstructure. XRD proved the formation of portlandite during the sorption test and eventual heating at 200°C, and its transformation into carbonates on contact with air, especially on heating at 400°C. The contents of these compounds were estimated from the mass difference between 400 and 800°C, which was compatible with the mass change between 220 and 400°C and this indicates surface reactivity. The test may serve for the routine study of cement.

Zusammenfassung

Zur Untersuchung der Zementqualität und der Reaktivität seiner Kornoberfläche wurde ein einfacher Wassersorptions/-retentionstest (WS/WR), gefolgt von schrittweisem statischem Erhitzen angewendet. Die Menge physikalisch gebundenen Wasser und somit die spezifische Oberfläche sowohl im unhydratierten als auch im hydratierten Zustand wurden als eine Funktion der Hydratierungszeit geschätzt Rehydratierung nach Erhitzen bei 220°C und Kontaktieren mit Luft ist fürWS- und fürWR-Proben verschieden, was eine Differenz der Mikrostruktur anzeigt. Röntgendiffraktion belegt die Bildung von Portlandit während des Sorptionstests und schließlichem Erhitzen bei 220°C sowie seine Umwandlung in Karbonate durch den Kontakt mit Luft, besonders beim Erhitzen bei 400°C. Der quantitative Anteil dieser Substanzen wurde anhand der Massendifferenz zwischen 400 und 800°C geschätzt, was mit der Massenänderung zwischen 220 und 400°C vereinbar ist und dies zeigt die Oberflächenreaktivität an. Dieser Test kann als Routineuntersuchung für Zement dienen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. T. Stepkowska, J. L. Perez-Rodriguez, A. Justo, P. J. Sanchez-Soto, M. A. Aviles and J. M. Bijen, 13th NSTAC, Thermochim. Acta, 214 (1993) 97.

    Article  CAS  Google Scholar 

  2. E. T. Stepkowska, J. M. Bijen, J. L. Perez-Rodriguez and A. Justo, Proc. 9th Intern. Congr. Chem. of Cement, Vol. 5, New Delhi 1992, p 247–253.

    Google Scholar 

  3. E. T. Stepkowska, Engineering Geology, 28 (1990) 249.

    Article  Google Scholar 

  4. E. T. Stepkowska and S. A. Jefferis, Thermochim. Acta, 114 (1987) 179.

    Article  CAS  Google Scholar 

  5. A. R. Ramachandranet al., Symp. on Microstructural Development During Hydration of Cement, Boston, Mater. Res. Soc. Symp. Proc., 85 (1986) 33.

    Google Scholar 

  6. K. van Breugel, Simulation of Hydration and Formation of Structure in Hardening Cement-Based Materials, Techn. Univ. Delft, 1991.

  7. P. Barnes, Structure and performance of cements, Appl. Sci. Publ. London, 1983.

    Google Scholar 

  8. F. M. Lea, The Chemistry of Cement and Concrete, E. Arnold Publ. 1970.

  9. T. C. Powers, Cement and Concrete Ass., London, 1968, p. 319.

  10. J. Hagymassyet al., J. Colloid Interface Sci., 29 (1969) 152.

    Article  Google Scholar 

  11. T. C. Powerset al., J. American Concrete Institute, 1946/1947, Parts 1–9.

  12. Z. Larionova, L. Nikitina and V. Garashin, Phase composition, microstructure and strength of cement stone and concrete, Stroyizdat, Moscow, 1977 (in Russian).

    Google Scholar 

  13. L. E. Copelandet al., Proc. 4th Intern. Congr. on the Chemistry of Cements, Wash., Vol. I, 1960, p. 429.

    Google Scholar 

  14. E. E. Lachowski and S. Diamond, Cem. Concr. Res., 13 (1983) 177.

    Article  CAS  Google Scholar 

  15. R. Angelova and D. Evstatiev Proc. 6th Intern. IAEG Congress, Balkema, 1990, p. 3147.

  16. S. Yariv and H. Cross, “Geochemistry of Colloid Systems”, Springer Verlag, Berlin, 1979.

    Google Scholar 

  17. S. Yariv, Isr. J. Chem. 9 (1971) 695.

    CAS  Google Scholar 

  18. A. Fraay and P. Wandenier, Stevinrapport: 25.1-90-02/C, T. U. Delft Sectie Materiaalkunde.

  19. Z. Sanman, Silikaty, 8 (1964) 185.

    Google Scholar 

  20. E. T. Stepkowska, C. Maqueda, J. L. Perez-Rodriguez, A. Justo, E. Gomez, Proc. 7th EUROCLAY Conf., Dresden, 1991, p. 1001–1005.

  21. E. T. Stepkowska, Z. Sulek, J. L. Perez-Rodrigez, A. Justo and C. Maqueda, J. Thermal Anal., 37 (1991) 1497.

    Article  CAS  Google Scholar 

  22. J. M. Criado, M. Macias and A. Macias-Machin, Report of Instituto de Ciencia de Meteriales, 41072 Sevilla, Spain, 1991.

  23. K. Kostyrko and M. Skoczylas, J. Thermal Anal., 38 (1992) 2181.

    Article  CAS  Google Scholar 

  24. E. T. Stepkowska, Arch. Hydrotechniki, 24 (1977) 3, 411.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor Lisa Heller-Kallai on the occasion of her 65th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stepkowska, E.T., Bijen, J.M.J.M., Perez-Rodriguez, J.L. et al. Thermal mass changes of portland cement and SLAG cements after water sorption. Journal of Thermal Analysis 42, 41–65 (1994). https://doi.org/10.1007/BF02546991

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02546991

Keywords

Navigation